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ABSTRACT: Hepatotoxicity, drug-induced liver injury, and
competitive Cytochrome P-450 (CYP) isozyme binding are
serious problems associated with drug use. It would be
favorable to avoid or to understand potential CYP inhibition at
the developmental stages. However, current in silico CYP
prediction models or available public prediction servers can
provide only yes/no classification results for just one or a few
CYP enzymes. In this study, we utilized a rule-based C5.0
algorithm with different descriptors, including PaDEL, Mold2,
and PubChem fingerprints, to construct rule-based inhibition prediction models for five major CYP enzymesCYP1A2,
CYP2C9, CYP2C19, CYP2D6 and CYP3A4that account for 90% of drug oxidation or hydrolysis. We also developed a rational
sampling algorithm for the selection of compounds in the training data set, to enhance the performance of these CYP prediction
models. The optimized models include several improved features. First, the final models significantly outperformed all of the
currently available models. Second, the final models can also be used for rapid virtual screening of a large set of compounds due
to their ruleset-based nature. Moreover, such rule-based prediction models can provide rulesets for structural features related to
the five major CYP enzymes. The five most significant rules for CYP inhibition were identified for each CYP enzymes and
discussed. An example was chosen for each of the five CYP enzymes to demonstrate how rule-based models can be used to gain
insights into structural features that correspond with CYP inhibitions. A newer version of the freely accessible CYP prediction
server, CypRules, is presented here as a result of the aforementioned improvements.

■ INTRODUCTION

In humans, more than 50 CYP enzymes have been identified.
Among them, five CYP enzymes are responsible for
approximately 90% of drug metabolism: CYP1A2, CYP2C9,
CYP2C19, CYP2D6 and CYP3A4.1,2 These enzymes facilitate
reactions including N-, O-, and S-dealkylation, aromatic-,
aliphatic-, and N-hydroxylation, and N-oxidation, sulfoxidation,
deamination, as well as dehalogenation.3 More than 900 drugs
and natural chemicals were found to cause liver damage that
could lead to a necessary liver transplantation operation or
death.1,4,5 In addition, hepatotoxicity and drug-induced liver
injuries are among the top reasons why many drug candidates
failed in clinical trials; they are also reasons why some FDA-
approved drugs were recalled or withdrawn from the market.
Therefore, detecting potential hepatotoxicity early in the drug
development processes, using models to study CYP interactions
with drug-like compounds, has been a popular topic in the past
decade. Most of these types of studies have applied different
machine learning approaches, including decision tree induc-
tion,6 back-propagation artificial neural networks,7 recursive
partition,8 Gaussian kernel weighted k-nearest neighbor,9

associative neural networks,10 and support vector machine11−14

methodologies. However, the majority of CYP prediction
models/servers were built from a small number of compounds
so the applicability of these models are not optimal. Most
importantly, all of these studies only provide yes/no
classification results. Currently, there are no rule-based

CYP450 inhibitory classification models for virtual screening,
nor rule-based predictors online.
Rule-based classification models could provide several

advantages over the other models that have been described in
the literature. Notably, not only can rule-based models act as
screening templates like other machine learning based
classification models, they can also specify rulesets of structural
features that directly contribute toward specific P450
inhibitions. These rulesets provide easier interpretation and
act as a guide for medicinal chemists to design or synthesize
new compounds, without potentially inhibiting a specific CYP
enzyme by avoiding those structural features altogether.
Another advantage of using a rule-based classification model
is the performance speed; as the nature of a rule-based model is
generally very fast.
An issue to be considered when constructing rule-based

models is the imbalanced data from large high throughput
screening data sets, especially CYP2D6 data sets because the
number of CYP2D6 inhibitors is very low (only 19% of the data
in the CYP2D6 training sets are inhibitors). This probably
explains why CYP2D6 classification models in the previous
studies were the least accurate compared to other CYP models.
For imbalanced data, developing a good strategy to select
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representative compounds for the training set will enhance the
performance of subsequent classification models.15

Quantitative structure−activity relationship (QSAR) ap-
proaches on P450 metabolism have been widely developed
over the last two decades and extensively reviewed in several
articles.16−23 By corresponding biological CYP inhibitory
activities with structural features and descriptors, QSAR
analyses are advantageous in two ways: they present predictions
of CYP inhibitory activity as quantitative values and they also
assist in discerning the key structural features of compounds
contributing to their inhibition potency. However, the QSAR-
based approach works the best with analogs. Despite the fact
that there have been numerous rule-based QSAR models
developed over the years, still there are currently no rule-based
QSAR models for the five major P450 isozyme readily available
in the form of a web server, for users to publically access right
away.
In this study, we have chosen five of the most common CYP

enzymes to construct their corresponding inhibition prediction
models, based on screening data for more than 16 000
compounds. The five CYP enzymesCYP1A2, CYP2C9,
CYP2C19, CYP2D6 and CYP3A4were chosen, because
together they account for approximately 90% of the drug
metabolism. Our goals are (a) to build statistically high
performance classification models using rule-based C5.0
algorithm, that directly provide structural information con-
tributing to P450 inhibition in a faster and more direct manner,
compared with other machine learning methods, and (b) to
make these prediction models simple to use, as well as freely
available on the web server, allowing users to perform quick
inhibition assessment of compounds on the five major CYP
enzymes. Our classification models can generate rulesets to give
users insight on how chemical structures are related to P450
inhibition. We have previously published a web server,
CypRules,24 in the application notes describing the earlier
version of our rule-based C5.0 algorithm prediction models,
capable of predicting and providing structural rulesets for CYP
inhibition, for any compound uploaded to the server. Here, we
provide a detailed illustration and discussion of our methods
and results. In addition, we’ve also designed a rational sampling
algorithm to considerably improve the performance of our
prediction models. We applied the rational sampling algorithm
to our previous models under the published CypRules (version
1.0) web server. The optimized models, CypRules (version
2.0), presented here as a result of such improvement,
significantly outperformed all of the models in all of the
previous studies. Furthermore, we’ve identified the top five
most significant CYP inhibition rules for each of the CYP
models discussed here, we’ve also chosen known CYP
inhibitors to demonstrate how rulesets from our models can
relate structural features to each CYP inhibitors.

■ MATERIAL AND METHODS
Hepatotoxicity End Points. The data set used in this

study was collected from the National Institutes of Health
Chemical Genomics Center (NCGC) cytochrome panel assay’s
PubChem BioAssay database (AID 1851), using the
quantitative high-throughput screening (qHTS) technique.25,26

The detailed NCGC assay protocol is provided online
(PubChem BioAssay AID 1851). The cytochrome P450
panel assay was used to determine CYP inhibitory activity
through the measurement of luciferin−luciferase biolumines-
cence. Luciferin is a substrate for luciferase enzymes; after

luciferase was added to the assay to produce light, luciferin can
be measured by luminescence. According to the protocol, the
presence of inhibitors will limit the production of luciferin,
therefore reduce measurable luminescence of luciferin. In this
way, the inhibitory effect of these compounds on P450
isozymes were determined via the measurement of light
intensity.26

The initial data set taken directly from the NCGC PubChem
BioAssay database contains 17 143 compounds. However, not
every single one of these compounds is either a known
inhibitor or noninhibitor of CYP enzymes 1A2, 2C19, 2C9,
2D6, or 3A4 respectively. For this reason, the selection of
appropriate compounds for each of the CYP enzymes is
carefully considered. First and foremost, the compounds that
are known to be inorganic, or only contain salts that provide no
chemical information, were eliminated from the data set. Next,
compounds that were found to be ambiguous (could be
classified as both an inhibitor and noninhibitor for the one
specific P450 isozyme), or have structural duplicates, were
eliminated from the data set for that particular isozyme.
Consequently, not all of the 17 143 compounds were screened
against all five of the P450 isozymes, and the final numbers of
active and inactive compounds in the refined data set for each
P450 end point are listed in Table 1. In this way, the final data

sets used to build the rule-based CYP 1A2, 2C19, 2C9, 2D6,
and 3A4 models, respectively, are specific to each of the
enzyme. At last, the compound structures in each of these data
sets were screened to ensure that there are no redundant ions,
then they were converted to three-dimensional structures in
preparation for the following 1D, 2D, and 3D molecular
descriptor calculations.

Descriptor Sets. In this study, 1D, 2D, and 3D trial
descriptors were used, alone or in combination, to develop
classification models for the five chosen P450 end points. The
1D and 2D descriptors were calculated by PaDEL-Descriptor,
Mold2, and PubChem fingerprints individually, and the 3D
descriptors were calculated by PaDEL-Descriptor alone.
PaDEL is a software developed by the National University of

Singapore; it is available free of charge.27 The software
currently calculates 1875 descriptors, 1444 of which are 1D
and 2D descriptors, the remaining 431 being 3D descriptors.
The descriptors were calculated with the aid of the Chemistry
Development Kit and several additional programs. These
additional descriptors include: atom type electrotopological
state descriptors,28 Crippen’s logP and molar refractivity
(MR),29 extended topochemical atom (ETA) descriptors,30

McGowan volume,31 molecular linear free energy relation
descriptors,32 ring counts, and count of chemical substructures
identified by Laggner.33 For PaDEL descriptors calculation, 1D
and 2D descriptors were calculated simultaneously and treated
as one descriptor set (PaDEL1&2D), while 3D descriptors
were treated as an independent descriptor set (PaDEL3D).
Sixty-eight of the PaDEL3D descriptors were removed in our

Table 1. Number of Active and Inactive Compounds
Screened from the PubChem BioAssay Database (AID 1851)

CYP1A2 CYP2C19 CYP2C9 CYP2D6 CYP3A4

no. of active
compounds

5891 5828 4090 2647 5177

no. of inactive
compounds

6912 7062 8380 10869 7456
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study because the values of these descriptors in most of our
compound data set cannot be calculated.
Mold2 is software, also available free of charge, developed to

enable the rapid calculation of 777 1D and 2D descriptors
encoding two-dimensional chemical structure information.34

Comparative analysis of Mold2 descriptors with Cerius,35

Dragon,36 and Molconn-Z37 on several data sets using Shannon
entropy,38 demonstrated that Mold2 descriptors are capable of
generating a similar amount of information.34 It has been noted
in the literature that when the same classification method was
used, Mold2 descriptors typically produce slightly better models
compared to those generated using equivalent descriptors from
commercial software packages. In addition, Mold2 consumes
lower computing power and provides a moderate amount of
chemical structure information. For these reasons, Mold2 is
suitable and consequently used for the virtual screening of large
databases.
PubChem fingerprints were also used to generate 1D and 2D

descriptors for our data set.39 PubChem fingerprints database
consists of 881 bits of descriptors related to element counts,
aromatic or nonaromatic ring counts, atom pairs, atom
neighborhoods, and specific fragments.
Construction of Classification Models. All different

combinations of three descriptor sets were selected to build
the classification models. To evaluate their classification
performance for each of the chosen P450 end point, the
corresponding data set was randomly divided into a training set
and a testing set of 8:2 ratio initially. Next, the training set for
one end point was then trained and evaluated by the testing set,
using two machine learning methods: (a) rule-based C5.0
algorithm and (b) support vector machine (SVM) respectively.
Our goal is to determine, for each P450 end point, which
combination of the three descriptor sets will yield the highest
relative accuracy in classifying active versus inactive com-
pounds, when one of the two machine learning methods was
applied.
Rule-Based C5.0 Algorithm. C5.0 is a decision tree

generating algorithm derived from its well-known predecessor,
C4.5 algorithm.40 The preceding C4.5 algorithm was developed
by Ross Quinlan40 using the concept of information entropy. At
each node on the decision tree, the C4.5 algorithm chooses an
attribute from the data that most effectively divides the initial
set of samples into subsets enriched in one class or the other.
This splitting criterion is known as the normalized information
gain (or the difference in entropy). Ultimately, the attribute
which results in the highest normalized information gain is then
chosen to make the subsequent decision.
Decision trees can sometimes be quite difficult to under-

stand. An important feature of the C5.0 algorithm is its ability
to generate classifiers called “rulesets” which consist of
unordered collections of (relatively) simple if-then rules. The
Rule-based C5.0 algorithm offers a number of other improve-
ments on the C4.5 algorithm as well.16 First of all, the C5.0
algorithm is significantly faster than the C4.5 algorithm.40 It is
more memory-efficient, and is capable of generating similar
results compared to the C4.5 algorithm, but with considerably
smaller decision trees. Last but not least, the C5.0 algorithm is
able to provide the rulesets for which the predicted results were
based on. The rulesets obtained from this algorithm can then
be used to support further inspection, to decipher the
relationship between chemical compounds and the molecular
descriptors used to classify them.

Compared to our previous CYPRules publications,24 we
further adopted the boosting mode in the C5.0 algorithm to
enhance the accuracy of our models. Under the boosting mode,
the system adaptively constructs at least four rule-based models
and uses these rule-based models to classify a compound as
either active or inactive by the majority rules. For simplicity’s
sake, our revised CYPRules website will only show the five
descriptors which appear with the highest frequency among the
rules that correctly predicted the input compound in the
majority class.

Support Vector Machine. The concept and implementa-
tion of SVM was proposed by Vapnik et al. in 1995.41,42 It is a
(kernel function based) supervised machine learning technique
that is primarily used to separate compounds into binary
classes. When the compounds in a training set are linearly
separable, SVM will divide these compounds into two classes of
molecules with a maximum margin hyperplane. The maximum
margin on either side of the hyperplane is defined as the largest
distance to the nearest training data points. For nonlinear cases,
SVM will project feature vectors (molecular descriptors) onto a
transformed high-dimensional feature spacesimilar to an
energy landscapeand search to fit the maximum margin
hyperplane in the multidimensional feature space. Finally, SVM
uses the traditional training and testing sets approach; in which
SVM is trained using a set of data with known classification,
then applied to another data set to evaluate the trained SVM
model’s ability to classify other compounds.

Comparison of Classification Models. To evaluate the
predictive performance of classification models, accuracy,
sensitivity, and specif icity are defined as follow:

=
+

+ + +
accuracy

tp tn
tp fn tn fp (1)

=
+

sensitivity
tp

tp fn (2)

=
+

specificity
tn

tn fp (3)

Accuracy is defined as the total percentage of both active and
inactive compounds correctly predicted. Sensitivity, also
referred to as recall or the true-positive rate, is the percentage
of active compounds correctly identified. Specificity, also
known as the true-negative rate, is the percentage of inactive
compounds correctly predicted. In eqs 1−3, tp is the number of
true positives (active compounds that are correctly predicted),
fn is the number of false negatives (active compounds that are
incorrectly predicted to be inactive), tn is the number of true
negatives (inactive compounds that are correctly predicted),
and fp is the number of false positives (inactive compounds
that are incorrectly predicted to be active). Sensitivity and
specificity are good individual measures, with respect to activity
and inactivity, of a model’s ability to correctly classify
compounds from training and testing sets. The geometric
mean (G-mean) is calculated by combining sensitivity and
specificity to obtain a single numerical value; this function
provides a simple measure that indicates the extent to which a
model is able to correctly predict the classification of both
active and inactive compounds, as well as a convenient metric
to quickly select optimal models. The G-mean value is defined
as

‐ = ×G mean sensitivity specificity (4)

Journal of Chemical Information and Modeling Article

DOI: 10.1021/acs.jcim.5b00130
J. Chem. Inf. Model. 2015, 55, 1426−1434

1428

http://dx.doi.org/10.1021/acs.jcim.5b00130


A good P450 prediction (classification) model should
minimize the possibility of misclassifying both active and
inactive compounds. Therefore, the G-mean value is a good
indication of a model’s performance, as both the sensitivity and
specificity of the model are considered.
Sampling Algorithm. A significant novelty in our study

involves the development of a sampling algorithm to better
define the training and testing data sets, since randomly
splitting a whole data set into a training set and a testing set is
not an ideal strategy for building models and evaluating their
performance. Theoretically, a sound training data set should be
representative of the whole population. Therefore, the purpose
for our sampling algorithm is to ensure the compounds with
higher structural dissimilarity (compared to other compounds
in the whole data set) are included into the training data set,
and that each compound in the testing data set must have high
structural similarity with at least one compound from the
training data set. These criteria will ensure that the compounds
chosen for the training and testing data sets will be equally
representative of the known chemical diversity, so that the
models built using these data sets will be able to generate more
accurate prediction of CYP inhibition.
The first step in our algorithm is to calculate the pairwise

structural similarities based on PubChem fingerprints using
tanimoto coefficients. The arbitrary order initially assigned to
these compounds will not change in the following process.
Essentially, compounds with tanimoto coefficients higher than a
specified threshold, in comparison with the first compound,
were selected for the testing data set, whereas the first molecule
was included in the training data set. The same process was
repeated for the remaining compounds, until the number of
testing compounds reaches our expected number. It is
important to note that a compound that has been selected
for the training data set will not be reassigned to the testing
data set. At the end of this selection process, if the number of
testing compounds is not sufficient, the program will restart
again after the threshold of structural similarity is decreased by
0.1.
The initial value of the threshold was set to 0.99. According

to our analysis of the five testing sets, on average 13% of the
compounds from our testing sets have Tanimoto values higher
than 0.99 with one chemical in the training sets. However, this
initial similarity threshold (Tanimoto = 0.99) resulted in an
insufficient number of testing compounds, to be used for the
construction of CYP prediction models. In order to select
sufficient number of testing compounds, the final similarity
threshold was adjusted accordingly, and the final threshold used
was about 0.92 (Tanimoto = 0.92). This resulted in a sufficient
and ideal testing set and training set ratio of 2:8 for our CYP
models.
In short, the sampling algorithm was applied to construct

well-defined training and testing data sets to improve the
performances of CYP classification models. The overall
workflow of our rule-based classification model building was
illustrated in Figure 1.

■ RESULTS AND DISCUSSION
Optimized Rule-Based Classification Models for CYP

Inhibition. For each cytochrome P450 end point, different
combinations of the three descriptor sets (PaDEL1&2D,
PaDEL3D, and Mold2) were tested in the classification models
built by using two machine learning methods (C5.0 algorithm
and SVM) with random sampling strategy initially. The

performance of the best models tested for each P450 testing
data set, as determined by accuracy, sensitivity, specificity, and
G-mean, was summarized in Table 2. The third column shows
the descriptor combination used in the best models. The best
C5.0 models yielded an average sensitivity and specificity of
74.7%, and 80.7%. The average sensitivity and specificity values
for SVM models were 79.4% and 81.7%. The small differences
between the average percentages reported for sensitivity and
specificity of the two types of models, suggested that the
performance of C5.0 rule-based models is comparable with the
performance of SVM models. However, despite having the
highest accuracy percentage reported for C5.0 models, the
sensitivity for CYP2D6 end point was low (below 70%).
However, C5.0 algorithm approach generated models that are
more transparent and interpretable than the SVM models, the
sensitivity percentages reported for some CYP data sets were
low, or not of high enough performance. For this reason,
sampling algorithm was applied to enhance the performance of
the five CYP classification models. It should be noted that only
C5.0 rule-based models were considered next; the purpose is to
optimize these rulesets generating models, to provide users
with a list of CYP inhibition structural characteristics, that are
much easier to interpret and more user-friendly compared to
SVM models.
After applying the sampling algorithms to generate a training

data set that can better represent the population of the whole
data set, the performance of the five optimized CYP inhibition
classification models using C5.0 algorithm was summarized in
Table 3. Because nearly 80% of the descriptors included in
PaDEL and Mold2 are abstract representation of molecular
structures, such as topological indices, we further added
PubChem fingerprints in our descriptor pools. If the rules
generated by the C5.0 models are based more on molecular
structural fragments, those rules will be more useful to the
medicinal chemists, since they may be able to directly decipher
which structural fragments violate CYP rules. The second
column shows the combinatorial descriptor sets used in the

Figure 1. Overall workflow for our rule-based classification model
building for prediction of five cytochrome P450 enzymes.
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corresponding optimized models. For CYP2C19, CYP2C9, and
CYP3A4, it appears that the combination of all of the descriptor
sets resulted in the best C5.0 models. It is interesting to see that
the optimized CYP1A2 and CYP2D6 models featured only
PaDEL1&2D descriptor set, and PubChem fingerprints,
respectively. The optimized models yielded the average
accuracy, sensitivity, specificity, and G-mean percentages of
94.2%, 93.2%, 94.8%, and 94.0% for training data sets,
respectively. The corresponding average accuracy, sensitivity,
specificity, and G-mean percentages for testing sets were 87.5%,
86.0%, 88.2%, and 87.1%. The sensitivities and specificities of
C5.0 models increased by 11% and 8% for the testing data sets,
after the sampling algorithm was applied. It is noted that in
order to treat the imbalanced data set for the CYP2D6 isomer,
we further incorporated the oversampling strategy by
amplifying the CYP2D6 inhibitors in the training data set, to
balance the ratio of inhibitors to noninhibitors (1:1 ratio).
Without sacrificing the specificity, the sensitivity of the
optimized C5.0 model for CYP2D6 was enhanced nearly
30% for testing data set. This demonstrated that the
oversampling strategy combined with the appropriate selection
of representative compounds in the training data sets, produced
excellent CYP inhibitory classification models.
Of the five CYP models, 2C9 was the only overfitted model,

since accuracy/sensitivity/specificity reported are all close to
99.9% for the training set, yet its prediction performance
reduced to 81% for the testing set. However, the 2C9 model is
limited by the data. Since our model includes the largest public
available screening compounds, the “overfitted” 2C9 model was
indeed the best model we could construct given the limitation
of the current compounds in the 2C9 data set selected from all
the machine learning methods and statistically boosting method
we tested (best SVM model’s sensitivity on the testing set was

down to 70.8%). When more chemical databases are made
available, we will update our data sets and our models
accordingly in the future, to again reflect the most currently
known chemical space at that time.
We have updated the CypRules web server (http://cyprules.

cmdm.tw/) accordingly to reflect our current optimized rule-
based classification models. It should be noted that the term
“optimized” models used in our study refer to the best
performing models we have generated after the sampling
algorithm was applied. These models are considered optimized
relative to our initial “unoptimized” construction.
To investigate the variation of structural dissimilarities

between the training data set and test data sets after applying
the sampling algorithm, we used the Tanimoto coefficient to
calculate the pairwise structural similarities within the training
and testing data sets based on PubChem fingerprints. The
resultant average values of structural dissimilarities (1 −
similarities) for the training and testing data sets were listed
in the second and third rows of Table 4, respectively. All of the
differences in dissimilarities between training sets and testing
sets (fourth row) were below 0.02. This demonstrated that our
selected training compounds were representative compounds
that enhanced performance in the training and testing set, as
well as preserved structural similarities and characteristics.

Table 2. Summary of the Best Models Tested for Each P450 Testing Dataset, Utilizing Different Trial Descriptor Sets with Rule-
Based C5.0 and SVM Learning Methods

end point method descriptor usage accuracy (%) sensitivity (%) specificity (%) G-mean

CYP1A2 C5.0 PaDEL1&2D + PaDEL3D 79.5 88.9 71.5 79.7
SVM Mold2 79.8 86.8 74.0 80.1

CYP2C19 C5.0 PaDEL1&2D 86.0 84.5 87.2 85.8
SVM PaDEL1&2D 84.3 87.5 81.7 84.6

CYP2C9 C5.0 Mold2 + PaDEL3D 76.8 65.8 82.2 73.5
SVM Mold2 + PaDEL3D 79.8 70.8 84.2 77.2

CYP2D6 C5.0 Mold2 + PaDEL3D 89.8 58.0 90.4 72.4
SVM Mold2 + PaDEL3D 91.0 71.9 95.6 82.9

CYP3A4 C5.0 Mold2 + PaDEL3D 73.3 76.3 72.0 74.1
SVM Mold2 + PaDEL3D 75.6 80.0 73.0 76.4

Table 3. Summary of the Optimized Models Tested for Each P450 End Point after Applying the Sampling Algorithm, Utilizing
Different Trial Descriptor Sets with Rule-Based C5.0 Methods

end point descriptors included data set accuracy (%) sensitivity (%) specificity (%) G-mean

CYP1A2 PaDEL1&2D training 96.3 94.4 97.9 96.1
testing 93.0 92.4 93.6 93.0

CYP2C19 PaDEL1&2D + PaDEL3D + Mold2 + Pubchem training 84.8 86.7 83.3 85.0
testing 84.6 80.2 88.2 84.1

CYP2C9 PaDEL1&2D + PaDEL3D + Mold2 + Pubchem training 99.9 99.9 99.9 99.9
testing 81.4 82.0 81.0 81.5

CYP2D6 Pubchem training 98.0 99.2 96.7 97.9
testing 90.6 85.4 91.9 88.6

CYP3A4 PaDEL1&2D + PaDEL3D + Mold2 + Pubchem training 92.1 86.0 96.3 91.0
testing 87.9 90.2 86.3 88.2

Table 4. Average of Pairwise Dissimilarities within the
Training and Testing Datasets for the Corresponding
Optimized CYP Models after Applying Sampling Algorithm

dissimilarity 1A2 2C19 2C9 2D6 3A4

training set 0.118 0.209 0.208 0.357 0.208
testing set 0.138 0.212 0.211 0.339 0.211
difference 0.020 0.002 0.003 0.018 0.003
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Comparison with Other P450 Inhibition Prediction
Systems. To further substantiate the overall quality of the
optimized P450 classification models built in this study, five
published in silico studies for P450 classification employing
different methodologies, were compared to the best C5.0
models in this study. All the different P450 models considered
for comparison analysis were summarized in Table 5. The first
column describes each of the modeling methodologies, and the
first row includes the corresponding P450 end points
investigated in these studies. The second to thriteenth columns
contain the predicted accuracy of the training set with the
number of training set compounds in parentheses and the
predicted accuracy of the testing set with the number of testing
set compounds also given in parentheses for five P450 end
points, respectively. The optimal C5.0 models reported within
this study were placed in the first row. The five published in
silico studies are listed in ascending order based on the number
of compounds in each training set. Among five previous studies,
relatively high training set accuracy was obtained by using the
recursive partition and Gaussian kernel weighted k-NN
modeling methods, but these models were constructed using
smaller training sets. Although the prediction power of the
model was greatly affected by the number of the training set
molecules, the C5.0 rule-based models in general achieved the
best accuracies among all the models for the training set. Table
5 is intended to simply compare the prediction accuracies of the
best models published for the five P450 end points, with the
best model constructed from this study. We are aware that the
prediction accuracies obtained from these literature reports
were based on different data sets; however, there is not an
appropriate external data set since we included the largest data
sets available in our training and testing data sets already, and
most of previous models (only SVM and BP-ANN method in
Table 5 were using the same data sets) were built from data sets
containing significantly smaller number of compounds. Thus,
our models were built using more chemical diverse data sets
(with significantly larger number of compounds, and

incorporated much more chemical diversity to better represent
the currently known chemical spaces), and the prediction
accuracies of our models for the five P450 end points have not
been compromised. On the contrary, the prediction accuracies
of our models are higher than the best published models.
For the testing set, our C5.0 models achieved the highest

accuracies for CYP1A2, CYP2D6, and CYP3A4 compared to
other studies. It was also shown that VHTS data have similar
testing set accuracy using SVM to our studies. SVM is indeed a
powerful machine learning technique that can usually construct
better models than other methods. However, most publications
using SVM did not provide a program or online server for CYP
inhibition prediction. Currently, the best freely accessible CYP
prediction server to our knowledge is WhichCyp which also was
built using SVM. Table 6 summarized the comparisons between
our five optimized rule-based classification models and
WhichCyp. Our rule-based models outperformed in most
CYP isoforms compared to WhichCyp. Most importantly, it is
difficult to illustrate how to predict a compound as an inhibitor
or noninhibitor during the processing of SVM models.
WhichCYP provides yes/no classification results only, while
our rule-based models can further provide detailed structural
information that can be used as guidelines to refine drug
candidates.

Descriptor Terms Used in Our Models. In Table 7, the
numbers of descriptor terms selected in the five optimized
classification models were summarized. The second and fourth
columns listed the total number of active (inhibitory) and
inactive (noninhibitory) rules for each model, and the
corresponding number of descriptor terms selected by C5.0
optimization processes in each model were listed in third and
fifth columns. In the CYP2D6 model, the ratio of active
descriptors to inactive descriptors is highly imbalanced (1:18)
since the difference between the numbers of inhibitors and
noninhibitor compounds in the CYP2D6 data set is highly
skewed. Overall, nearly 50% of descriptors were selected in our
models. It shows that the predicted capacity of the models

Table 5. Summary and Comparison of Prediction Accuracies between the Best Modeling Methodologies Tested for Each P450
End Point, from This Study and from the Published Literature

modeling methodology accuracy CYP1A2 CYP2C19 CYP2C9 CYP2D6 CYP3A4

C5.0 models of this study training 96.3% (10238) 84.8% (10306) 99.9% (9903) 98.0% (10814) 92.1% (10044)
testing 93.0% (2559) 84.6% (2577) 81.4% (2475) 90.6% (2702) 87.9% (2511)

recursive partition8 training 89% (306) 90% (498)
testing 81% (58) 89% (34)

Gaussian kernel weighted k-NN method9 training 87% (865) 83% (1037)
testing 88% (345) 82% (288)

associative neural networks (ASNN) method10 training 83% (3745)
testing 68% (3741)

SVM with VHTS data14 training 87.5% (7208) 80.6% (6038) 82.9% (6627) 89.5% (7788) 81.0% (6800)
testing 93.0% (7128) 89.0% (5923) 89.0% (6530) 85.0% (7761) 87.0% (6738)

combined approach based on back propagation-artificial
neural network (BP-ANN)7

training 77.2−81.3%
(12099)

72.3−78.0%
(11885)

73.5−77.3%
(12130)

81.7−83.7%
(11881)

72.3−76.7%
(11536)

testing 59.7−73.1%
(2804)

70.5−81.0%
(2691)

75.4−86.7%
(2579)

78.5−87.8%
(2860)

66.3−76.0%
(7025)

Table 6. Model Comparisons between Our Five Optimized Rule-Based Models (Rule) and WhichCyp13 (SVM)

1A2 2C19 2C9 2D6 3A4

model rule SVM rule SVM rule SVM rule SVM rule SVM

accuracy 93 87 84 84 81 86 90 84 88 84
sensitivity 92 88 80 83 81 84 85 75 90 84
specificity 94 88 88 83 81 85 91 86 86 84
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would be applicable, since the model was not restricted on a
small scope of descriptors. Although a portion of the used
descriptors in our models are not easy to understand, for each
model, we have selected and introduced five significant rules
that can be used as guidelines in the correct classification of
each CYP inhibitions in the following sections. The five rules
having highest frequencies used to classify a compound as a
CYP inhibitor both in training and testing data set were
identified as our five significant rules. Moreover, we selected
one well-known CYP inhibitor in each model for interpreta-
tions of corresponding significant rules. Since most compounds
are expected to be noninhibitors, the noninhibitory rules were
not specifically shown and discussed in this study. The
interpretations of the CYP1A2, CYP2C19, CYP2C9, and
CYP3A4 models were included in the supplementary file.
Interpretations of CYP2D6Model. For CYP2D6, the best

selected descriptor set in the optimized C5.0 model contains
only PubChem fingerprints. Five significant rules that assist the
CYP2D6 model to classify a compound as a CYP2D6 inhibitor
were shown in Figure 2A. We take Berberine (DrugBank ID:
DB04115), a well-known CYP2D6 inhibitor, as an example to
explain these rules. Berberine was correctly classified as an
inhibitor by the CYP2D6 C5.0 prediction model and the five
identified significant rules are the dominant rules for Berberine
as well. Since these PubChem fingerprints can be easily
understood by their original descriptor names, the definitions of
these functional groups were ignored. For the rules listed in
Figure 2A, “=1” means the presence of the rule in a compound
whereas “=0” means the absence of the rule. We first focused
on the two presences of the rules. For the second descriptor
(propylene) listed in Figure 2A, if a compound contains
aromatic rings, the compound must contain the propylene
fragment. Berberine includes three aromatic rings which
increases the probability that the compound will be a
CYP2D6 inhibitor and the features are colored in red in Figure
2A. According to the fourth rule, the substructure, 1,3-
dioxolane from Berberine contains one “C(∼H)(∼O)(∼O)”
group colored blue (Figure 2A) which also enhances the
CYP2D6 inhibitory propensity. Regarding the absence of rules,
Berberine contains no rings of size 3, no “O(∼H)(∼S)”
fragments, and only one unsaturated nonaromatic heteroatom-
containing ring size of six included in Berberine. Overall,
Berberine was predicted as an inhibitor because of its aromatic
rings, 1,3-dioxolane, low occurrences of unsaturated non-
aromatic heteroatom-containing rings of size 6, and absence of
heteroatom-containing ring of size 3, or “O(∼H)(∼S)”.
Next, we demonstrated that how to use theses rulesets as a

guide for medicinal chemists to design or modify an inhibitor
without potentially inhibiting a specific CYP enzyme by
avoiding those structural alerts (Figure 2A) altogether.
Changing one of the rules described in Figure 2A by structural
modification of Berberine can make it a noninhibitor. A

minimal change that we can apply without altering the main
core structure of Berberine is to change the alert of 1,3-
dioxolane. After deleting the carbon atom between the two
oxygens on the 1,3-dioxolane of Berberine, the modified
Berberine then mismatched the CYP2D6 inhibitory ruleset. A
very similar structure to Berberine, Coralyne Sulfoacetate
(CID: 6419900), was observed and shown in Figure 2B. The
structure of Coralyne Sulfoacetate not only satisfied the
condition we discussed above without the structure alert of
1,3-dioxolane, but also was actually a CYP2D6 noninhibitor
according to the NCGC Cytochrome panel assay (AID: 1851).
Our best CYP2D6 rule-based model also successfully predicted
Coralyne Sulfoacetate as a CYP2D6 noninhibitor. As a result,
we can infer that the modified Berberine which violate the alert
of 1,3-dioxolane could become a CYP2D6 noninhibitor.

Limitations of our Models. Our final C5.0 rule-based CYP
prediction models would be more appropriately described as a
“multiple rules, 1 compound” type of model. The medicinal
chemists can inspect the structural or property alerts
contributing to the CYP inhibition for a query compound
predicted by the CypRules. However, a portion of our used
descriptors which belong to PaDEL or Mold2 descriptor pools
are the abstract representation of compounds, such as
molecular topological indices. Some of these descriptors are

Table 7. Numbers of Active (Inhibitory) and Inactive
(Noninhibitory) Rules and Descriptors Used in Each Model

models
active
rulesets

active
descriptors

inactive
rulesets

inactive
descriptors

CYP1A2 157 347 591 646
CYP2C19 12 59 142 214
CYP2C9 291 629 401 738
CYP2D6 24 27 1276 472
CYP3A4 181 414 276 447

Figure 2. (A) Berberine: an example of the specific rulesets and
calculated values provided by the optimized CYP2D6 rule-based C5.0
classification model, which correctly predicted Berberine as a CYP2D6
inhibitor. (B) Coralyne Sulfoacetate: an example of CYP2D6
noninhibitor which is similar to the structure of Berberine. (The
rules listed for Coralyne Sulfoacetate is same as for Berberine.)

Journal of Chemical Information and Modeling Article

DOI: 10.1021/acs.jcim.5b00130
J. Chem. Inf. Model. 2015, 55, 1426−1434

1432

http://dx.doi.org/10.1021/acs.jcim.5b00130


not easy to understand and could limit applicability of the
system. But, one should keep in mind, although the molecular
structural fragments such as PubChem Fingerprints can
facilitate directly modification on the molecular structure to
improve the CYP inhibition profile, the traditional structural
fragments cannot moderately fit on the CYP inhibition data
whereas our reported CYP1A2 C5.0 models based on the
combination of PaDEL1D and PaDEL2D descriptors indeed
resulted in a better performance. Actually, most of the Mold2

and PaDEL descriptors in optimal rulesets of models selected
by our C5.0 system can be interpreted and correlated with
physical meanings for structural modification of CYP profile.

■ CONCLUSIONS

The major findings and conclusions drawn from this study are
summarized here: (1) Rule-based C5.0 models have explan-
atory ability for each P450 end point compared to the SVM
models. (2) It was shown that by using a sampling method with
the rule-based C5.0 algorithm, we could improve each model’s
explanatory ability, both on the training set as well as on the
testing set. (3) A CYP inhibition prediction model was built,
featuring the advantages of the C5.0 algorithm that provides
chemical information and rulesets for further inspection. (4)
The updated CypRules web server not only predicted the
inhibition of P450 end points but also provided structural
rulesets that contribute to inhibition. (5) Five significant CYP
inhibition rules for each model were suggested and can give
users some insight on how chemical structures are related to
P450 inhibition. We have updated the CypRules website built
by our new optimized models as version 2. The user interface
on website of our CypRules version 2 is same as version 1. The
main difference between the two versions is that the prediction
power of version 2 has improved considerably after the
sampling algorithm, described in this study, was applied. The
average accuracy, sensitivity, and specificity increased 6%, 6%,
and 8%, respectively, for the five CYP data sets.
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