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At the root of applications for substructure and similarity searching, reaction re-
trieval, synthesis planning, drug discovery, and physicochemical property predic-
tion is the need for a machine-readable representation of a structure. Systematic
nomenclature is unsuitable, and notations and fragment codes have been super-
seded, except in certain specific applications. Connection tables are widely used,
but there is no formal standard. Recently the International Union of Pure and Ap-
plied Chemistry (IUPAC) International Chemical Identifier (InChI) has started
to attract interest. This review also summarizes the representation of chemical
reactions and three-dimensional structures. C© 2011 John Wiley & Sons, Ltd. WIREs Comput
Mol Sci 2011 1 557–579 DOI: 10.1002/wcms.36

INTRODUCTION

C omputers have been used since the 1960s for
storing chemical structures in databases and

for making use of chemical structural information
in applications such as similarity searching, reaction
retrieval, synthesis planning, drug discovery, and
physicochemical property prediction. At the root
of all these applications is the need for a machine-
readable representation of a structure. Although there
are two well-established ways of naming compounds,
overseen by the International Union of Pure and Ap-
plied Chemistry (IUPAC)1–3 and Chemical Abstracts
Service (CAS),4 systematic chemical nomenclature is
not suitable for chemical structure handling systems
because names are often long and complex, as are the
rules used to generate them, whereas the use of trivial
names and nonunique names further complicates the
issue. It is worth noting, though, that several pro-
grams have been written which successfully convert
a high proportion of names into machine-readable
structures,5–14 and there are also programs that can
assign systematic names for input structures.5,15–19

ACD/Labs (Toronto, Canada), CambridgeSoft
(Cambridge, MA), ChemAxon (Budapest, Hungary),
InfoChem (Munich, Germany), OpenEye Scientific
Software (Santa Fe, NM, USA), and the University
of Cambridge (Cambridge, UK) have all worked on
converting names to structures.
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To the practicing chemist, the language of
chemistry is the two-dimensional (2D) structure dia-
gram and most chemical information systems feature
graphical input and output of chemical structures; the
machine-held representation need not be meaningful
to the synthetic chemist. In the ideal (unique) repre-
sentation there is only one ‘code’ for a given struc-
ture and any one code can be interpreted to give only
one structure. A unique representation is essential for
chemical registration systems in which the novelty of
a structure is determined before it is recorded in a
database. Some representations, for example, molec-
ular formulas, are not unique; one molecular for-
mula will generate more than one full structure. Some
nonunique representations (e.g., molecular formulas
and fragment codes) do, however, play a part in cer-
tain chemical information systems, even though they
do not represent the full topology of a structure.

NOTATIONS

Line notations represent structures as a linear string
of alphanumeric symbols. Their compactness was an
advantage in the early days of cheminformatics when
storage space was at a premium, and even nowa-
days, it can be faster to enter a structure as a no-
tation instead of using a chemical structure drawing
program. Several notations20–22 were proposed in the
1950s and 1960s, but only one, the Wiswesser Line-
Formula Notation (WLN; see Figure 1)23–28 became
widely used,29–47 despite the fact that the Dyson no-
tation was formally adopted by IUPAC.20,21 WLN
started to fall out of use in the early 1980s. The range
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FIGURE 1 | A Wiswesser Line Notation.

of structures it could handle was limited, it was un-
able to encode the finer points of structures such as
stereochemistry, and its arcane rules were unaccept-
able in the new era of user-friendly systems for use by
chemists without the need for an intermediary.

Later in the 1980s the Simplified Molecular In-
put Line Entry System (SMILES; see Figure 2)48,49

was developed at Pomona College (Claremont, CA)
and implemented by Daylight Chemical Informa-
tion Systems (Santa Fe, NM). SMILES is still widely
used today. Daylight uses an extension of SMILES
called SMARTS to describe structure queries for
searching chemical databases. Sybyl Line Notation
(SLN)50,51 is also still in use with software from Tri-
pos (St. Louis, MO). Another notation, called rep-
resentation of structure diagram arranged linearly
(ROSDAL),52,53 was written to transfer structures
quickly in a compact form over a network to enable
searching of the Beilstein database online.54 ROSDAL
is still supported by InfoChem, and by Elsevier (Am-
sterdam, The Netherlands) in Reaxys (vide infra) and
the Beilstein CrossFire structure editor.

A given chemical structure can have many valid
and unambiguous representations (e.g., it is possible
to start with any atom to derive a SMILES string)
but for comparison purposes it is desirable to have a

FIGURE 2 | A Simplified Molecular Input Line Entry System
notation.

unique representation known as the ‘canonical’ one.
WLNs were ‘canonicalized’ (or ‘canonized’) by choos-
ing the one that occurred first alphanumerically. More
efficient methods have been devised for deriving a
unique SMILES for any structure,49 but nowadays
the usual way of storing structures in a computer is
a canonicalized connection table. A connection table
is a listing of atoms and bonds, and other data, in
tabular form.

CONNECTION TABLES

A redundant connection table is shown in Figure 3.
It is termed redundant because each connection is
described twice. The redundancy is removed when
a unique version of the table is stored. Hydrogen
atoms are not necessarily included explicitly in a
connection table: they may be implicit. Canonical-
ization usually involves renumbering the atoms in
a unique and reproducible way, for example, using
the Morgan algorithm initially developed by Gluck
at DuPont (Wilmington, DE, USA) and adapted by
CAS.55 When the database is constructed, issues such
as aromaticity, tautomerism, and stereochemistry are
addressed before canonical numbering. The 2D coor-
dinates needed to display a structure retrieved from
the database may be stored in the connection table
to make depiction easy or consistent. If they are not
stored, depiction software will be needed. ‘Laying out’
a pleasing structure is no simple task7,56–58; this is a
key task, for example, in algorithms that generate
chemical structures from systematic names.

Once structures are stored in connection tables
in a database, they can be searched by substructure,
that is, all the molecules in the database that contain
a specified substructure can be identified.59,60 Also,
full structures that match exactly can be retrieved.
Substructure searches are carried out by treating the
structure as a graph and then applying graph theoret-
ical algorithms to carry out the match. Topological
graph theory is a branch of mathematics particularly
useful in cheminformatics. The atoms of a structure
are treated as nodes in a graph and the bonds as
edges joining the nodes. The nodes and edges can
be ‘colored’ to distinguish them (e.g., oxygen atoms
or double bonds). Of course, chemical structures
and topological graphs are not entirely equivalent: a
connection table is akin to a description of a single
valence bond structure and does not take account,
for example, of delocalized bonds.

Alternative approaches have been suggested.
Dietz61 has proposed a ‘molecular multigraph’: a
connected, labeled, and undirected multigraph whose
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FIGURE 3 | A redundant connection table.

vertices are atoms and whose edges are bonding
relations. A multigraph may have several edges be-
tween the same two vertices, so it is no longer possi-
ble to represent a structure in a simple matrix form.
Bauerschmidt and Gasteiger62 have also recognized
the limits of a connection table description and its un-
suitability for handling delocalized π -systems, inor-
ganics, coordination compounds, and reaction inter-
mediates. Their system separates σ - and π -electrons
into two bond types, σ - and π -electron systems, and
introduces a third bond type for coordination com-
pounds. Electrons may be delocalized between more
than two atoms in all the three bond types. The
Molecular Structure Encoding System, MOSES, from
Molecular Networks (Erlangen, Germany) is a later
development from Gasteiger’s team.

The Morgan algorithm identifies atoms based
on an extended connectivity value. The atom with
the highest value becomes the first atom in the name,
and its neighbors are then listed in descending or-
der. Ties are resolved based on additional parame-
ters, for example, bond order and atomic number.
The original Morgan algorithm did not handle stere-
ochemistry; the stereochemically unique naming algo-
rithm [stereochemical extension of Morgan algorithm
(SEMA)] was developed to handle stereoisomers.63

SEMA was adopted by MDL Information Systems
(now Symyx Software, San Ramon, CA). Symyx’s
newly enhanced Morgan algorithm (NEMA)64 pro-
duces a unique name and key for a wider range of
structures than SEMA (More will be said about keys
in a later section.). The work of Wipke et al.65 identi-
fied the value of a constitutional key and a stereo key.
This approach has been incorporated into NEMA
that extends perception to nontetrahedral stereogenic

centers, and supports both 2D and three-dimensional
(3D) stereochemistry perception.

The MDL (now Symyx) connection table (see
Figure 4),66 or CTfile, has become the de facto stan-
dard for exchange of datasets. It separates atoms and
bonds into separate blocks. There are various versions
of this connection table. A molecule file, or ‘molfile,’
describes a single molecular structure that can con-
tain disjoint fragments. A molfile consists of a header
block and a connection table. The header block iden-
tifies the file by molecule name, user’s name, program,
date, and so on. An Rgroup file (RGfile) describes a
single molecular query with Rgroups (features of a
generic structure, which will be discussed later). A
reaction file (rxnfile) contains the structural informa-
tion for the reactants and products of a single reac-
tion. Structure–data files (SDfiles) contain structures
and data for any number of molecules. Reaction–data
files (RDfiles) are similar to SDfiles in concept, but the
RDfile is a more general format that can include reac-
tions as well as molecules, together with their associ-
ated data. XML data files (XDfiles) are a data format
based on Extensible Markup Language (XML) for
transferring record sets of structure or reaction infor-
mation with associated data. An XDfile can contain
structures or reactions that use any of the CTfile for-
mats, Chime strings, or SMILES strings (Chime is an
encrypted format that is used to render structures and
reactions on a web page). A white paper detailing the
latest version of the formats is available on the Symyx
web site.

Different vendors have developed proprietary
connection table formats. Efforts have been made
to establish an agreed standard format but they
have not been generally unsuccessful. The standard
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FIGURE 4 | MDL connection table organization.

molecular data (SMD) format67–69 never gained wide
acceptance. Standard file formats have, however, been
established for crystallographic information and the
IUPAC International Chemical Identifier (InChI) is
now used fairly widely. These formats will be dis-
cussed later. Chemical Markup Language (CML)70–80

uses the XML protocol for data exchange using the
Internet.

A substructure search query can be matched
against a connection table atom-by-atom but the so-
called subgraph isomorphism algorithm that is used
in substructure search to compare one graph against
another is slow and complex and it is likely that there
may be many mismatches before a hit is found. A
substructure search can be carried out faster if an ini-
tial screening stage is carried out to filter out quickly
structures that could not possibly be matches. A com-
mon method is to use substructure fragments as the
filter.

Hyperstructures have been suggested as a way
of representing the structural information in a set of
connection tables in a nonredundant form, to reduce
storage and processing costs.81–83 A hyperstructure is
a pseudomolecule formed by the superimposition of
sets of molecules in such a way that areas of structural
commonality are stored only once. The use of a frag-
ment screen, however, is the more usual approach in
improving the efficiency of substructure search.

FRAGMENT CODES

A fragment coding system is based on a collection
of small substructures or features in a closed list (a

controlled ‘dictionary’ of structural features) or an
open-ended list, for example, all linear paths of up to
a defined number of atoms, typically seven (paths of
length zero, paths of length one, and so on). Histor-
ically, each fragment was represented by a hole in a
punch card and the occurrence of any of these frag-
ments in a given structure was recorded by punch-
ing the appropriate holes in a card. One code, Ring-
code, developed by a group of companies called the
Pharma Documentation Ring, was used by Derwent
(London, England) (now Thomson Reuters) for the
Chemical Reactions Documentation Service, and for
literature searching.32,84–87 Fragment codes have been
particularly useful for storing and retrieving struc-
tures from patents. They can still be used for search-
ing the Derwent World Patents Index (a Thomson
Reuters database), although a software product called
TOPFRAG can now be used to generate the codes au-
tomatically from a structure input graphically.

The Derwent World Patent Index Chemical
Code85,88 is a closed code with about 1000 terms.
It can be searched online on Questel (Paris, France).
The IFI/Plenum Code is an open-ended code used in
the ‘CLAIMS’ database of US patents. It is searchable
online on STN International (Columbus, OH, USA).
A group of mainly German companies used a code
called GREMAS (originally generic retrieval by mag-
netic tape storage) for many years for retrieving both
patent and chemical reaction information,85,88–97 but
its use was discontinued in the 1990s. The GREMAS
code was a very sophisticated, open-ended code with
good retrieval performance.

Sub structural ‘keys’ from a fragment dictio-
nary are usually recorded as a binary bitstring, or
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fingerprint: the fragments present in a structure can
be represented as a sequence of 0s and 1s, where 0
means that the fragment is not present in the struc-
ture and 1 means that it is present in the structure.
Each 0 or 1 can be represented as a single bit: the ith
substructure in the dictionary corresponds to the ith
bit in the bitstring. These bitstrings are often called
structure ‘fingerprints.’

Comparing fingerprint bitstrings is very fast98

and is well suited to the screening stage of a sub-
structure search. Much work was carried out in the
1970s to determine the most effective screening sys-
tem, typically based on the frequency of occurrence
of fragments.99–104 The very large screen set dictio-
nary devised by the BASIC group of chemical com-
panies (Basel, Switzerland) is used in the online sys-
tem for searching the CAS database.94,105,106 CAS
uses 12 different types of screens, including aug-
mented atoms (a central atom with its neighboring
atoms and bonds), atom sequences (linear sequences
of connected atoms), bond sequences (atom sequences
with the bonds differentiated but not the atoms), and
screens associated with ring systems, such as the num-
ber of rings and the ring type.

The CAS screen set was specifically designed
for use in substructure searching, as were the dic-
tionary fingerprints used by Symyx, in the so-called
MDL, ISIS, or MACCS keys107–112 of 166 and 960
bits. On the contrary customized dictionaries from
Digital Chemistry (Sheffield, UK; formerly Barnard
Chemical Information) were designed for use in ap-
plications such as clustering of chemical structures to
analyze their similarity or diversity113–116 and distin-
guishing drugs from nondrugs.117 Fingerprints origi-
nally designed for use in substructure searching have
also been used as ‘descriptors’ in studies of the chem-
ical diversity of collections of compounds and in
quantitative structure–activity relationship (QSAR)
analyses.107–122

The alternative to structural keys is a ‘hashed
fingerprint.’ Each of the fragment paths in an open-
ended set is submitted to a hashing procedure that sets
a small number of bits (usually four or five) to 1 in
the fingerprint bitstring. Hashed fingerprints are typi-
cally used in software from Daylight Chemical Infor-
mation Systems. Tripos uses a combination of struc-
tural keys and hashed fingerprints. The French system
Description, Acquisition, Recherche et Corrélation
(DARC) uses a different sort of fragments called Frag-
ments Reduced to an Environment which is Limited
(FRELs).94,123–125 FRELs describe two concentric lay-
ers of atoms around a focus, which is an atom with at
least three (or in some cases two) neighbors. Around

1990, Questel offered online access to certain CAS
databases online under DARC, but nowadays sub-
structure search of CAS REGISTRY is possible only
with systems supplied by CAS.

The DARC FRELs are a type of ‘circular’ fin-
gerprint, as are SciTegic’s (San Diego, CA, USA)
(now Accelrys’) extended connectivity fingerprints or
‘ECFPs.’126 ECFPs were developed specifically for
QSAR. They have been widely used but details have
only recently been published. ECFPs were developed
specifically for QSAR, whereas circular fingerprints
described much earlier by Willett104 were developed
as substructure search screens.

REGISTRY SYSTEMS

CAS REGISTRY, produced by CAS, is an authori-
tative collection of disclosed chemical substance in-
formation, containing more than 53 million organic
and inorganic substances and more than 61 mil-
lion sequences, abstracted from the patent and jour-
nal literature.127–140 Each substance is identified by
a CAS Registry Number (CAS RN) and there are
links to the document where data on the molecule
were published. In the Beilstein Registry file,141,142

which also covers the scientific literature, data are
stored with the compound. Beilstein is online on
STN International86,143 and Dialog (Morrisville, NC,
USA);54,143 the version on DIALOG was mentioned
earlier in connection with ROSDAL. Software from
InfoChem is now used for substructure searching on
DIALOG. A very recent service, Reaxys, from Elsevier
merges Elsevier’s CrossFire Beilstein144–147 and Cross-
Fire Gmelin (inorganic chemistry) databases with the
company’s Patent Chemistry Database in a new work-
flow solution for synthetic chemists.

Chemical and pharmaceutical companies also
have registration systems for their corporate com-
pound collections. A key feature of a registry system
is checking for the novelty of a chemical structure
before registering in the database and assigning it a
registry number. If the structure is not found to be
novel, any new data related to the structure can be
recorded alongside the structure already on file. A
molecular formula is usually recorded with a struc-
ture, and consistency between the two items will be
checked.

Registry numbers are often meaningless in them-
selves, that is, they contain no chemical informa-
tion. A new addition to the CAS REGISTRY, for
example, will be assigned the next highest number
in a sequence. A CAS RN includes up to 10 digits
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that are separated into three groups by hyphens. The
first part of the number, starting from the left, has up
to seven digits; the second part has two digits; and the
final part consists of a single check digit. CAS RNs are
used in many other public and private databases as
well as chemical inventory listings and are included
in all CAS-produced databases. Proprietary registry
numbers in the chemical and pharmaceutical indus-
tries often have a hierarchical structure, for example,
parent compound, stereoisomer, salt, and batch.

IUPAC INTERNATIONAL CHEMICAL
IDENTIFIER

IUPAC developed the InChI as a freely available, non-
proprietary identifier for chemical substances that can
be used in printed and electronic data sources, thus en-
abling easier linking of diverse data compilations and
unambiguous identification of chemical substances.
IUPAC decided to tackle this problem because the in-
creasing complexity of molecular structures was mak-
ing conventional naming procedures inconvenient,
and because there was no suitable, openly available
electronic format for exchanging chemical structure
information over the Internet. The goal of InChI is
to provide a unique string representing a chemical
substance of known structure, independent of spe-
cific depiction, derived from a conventional connec-
tion table.148 InChI is freely available and extensible.
The InChI project was initially undertaken by IUPAC
with the cooperation of the US National Institute for
Standards and Technology (NIST).

An InChI is created from an input connec-
tion table in three steps: normalization, canonical-
ization, and serialization. In the normalization step,
electron density is ignored; salts and metal atoms
in organometallic compounds are disconnected; and
mobile hydrogens, variable protonation, and charge
are normalized. The step is needed, for example, to
remove variations in the ways of representing a nitro
group. NIST wrote the canonical numbering algo-
rithm by modifying a more recent version149 of the
Morgan algorithm. In the final step, the labeled struc-
ture is serialized and the InChI character string is the
output.

The identifier is hierarchically ‘layered’; each
layer holds a distinct and separable class of struc-
tural information, with the layers ordered to pro-
vide successive structural refinement. There are
currently six InChI layer types, each representing a
different class of structural information: the main
layer, a charge layer, a stereochemical layer, an iso-

FIGURE 5 | Example of an IUPAC International Chemical Identifier
(InChI) and InChIKey.

topic layer, a fixed-H layer, and a reconnected layer.
Except for the main layer (atoms and their bonds),
the presence of a layer is not required and appears
only when corresponding input information has been
provided. Layers and sublayers are separated by the
forward slash (/) delimiter. Except in the case of
the chemical formula layer, each layer starts (after the
slash mark) with a lower-case letter to indicate the
type of information held. An example is given in
Figure 5; here, the connectivity layer begins with ‘c’
and the hydrogen layer with ‘h.’

InChIKey is a condensed digital representation
of the identifier. This key facilitates Web searching,
previously complicated by unpredictable breaking of
InChI character strings by search engines. It also al-
lows development of Web-based InChI lookup ser-
vices, permits an InChI representation to be stored
in fixed length fields, and makes chemical structure
database indexing easier.

The first part of the key is 14 characters long
and encodes the molecular skeleton (connectivity).
After a hyphen, there is a second string of 10 charac-
ters, the first eight of which encode stereochemistry
and isotopes. The 10-character block ends with a flag
character indicating that this is a standard InChIKey
(produced out of standard InChI) and a version char-
acter indicating the version number of InChI. The key
ends with a hyphen followed by a character indicat-
ing (de)protonation state. Both parts of the InChIKey
are based on a truncated SHA-256 hash (secure hash
standard)150 of the corresponding InChI layers. There
is a finite, but extremely small probability of finding
two structures with the same InChIKey.

Figure 5 shows the standard InChI and
InChIKey for caffeine. In the key, the first block of
14 letters (RYYVLZVUVIJVGH) encodes the molec-
ular skeleton (connectivity). The first eight letters of
the second block (UHFFFAOY) encode stereochem-
istry and isotopes. After that, ‘S’ indicates that the key
was produced from standard InChI and ‘A’ indicates
that version 1 of InChI was used. The final character,
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‘N,’ means ‘neutral.’ Use of InChIKey allows searches
based solely on atom connectivity (the first 14 char-
acters).

Currently, the InChI algorithm can handle neu-
tral and ionic organic molecules, radicals, and inor-
ganic, organometallic, and coordination compounds.
Because InChI is composed of hierarchical layers, new
layers could be added to extend the scope of the iden-
tifier. Work is currently underway to extend InChI to
include polymer representation and reactions.

It is worth noting how InChI differs from
SMILES. Like InChI, the SMILES language allows a
canonical serialization of molecular structure. How-
ever, SMILES is proprietary and unlike InChI, it is
not an open project. This has led to the use of differ-
ent generation algorithms, and thus, different SMILES
versions of the same compound have been found.
InChI is not a registry system as that of CAS; it does
not depend on the existence of a database of unique
substance records to establish the next available se-
quence number for any new chemical substance being
assigned an InChI.

InChI has been used in chemical enhancement
of the semantic Web151–154 and in annotation of
3D structures.155 The Royal Society of Chemistry
(RSC) uses InChI in Project Prospect,154 the aim
of which is to make the science within RSC jour-
nal articles machine-readable through semantic en-
richment and the integration of metadata into text.
Text mining is used to attach structural information
(InChI, SMILES, and CML) to chemical names.9,13

A significant number of publishers and database
producers are now using InChI. The Internet-based
ChemSpider database uses InChI to register chemical
structures,154,156 and so does a system for chemical
structure indexing of toxicity data on the Internet.157

OTHER IDENTIFIERS

The National Cancer Institute Computer Aided Drug
Design (NCI/CADD) identifiers are calculated for the
Chemical Structure Lookup Service (CSLS) on the
Internet.158,159 They are based on hashcodes calcu-
lated by the cheminformatics toolkit Chemical Algo-
rithms Construction Threading and Verification Sys-
tem (CACTVS).158,160,161 The National Institutes of
Health’s PubChem substructure search system is also
based on CACTVS.156 CACTVS hashcodes162 (see
Figure 6) represent a chemical structure uniquely as a
16-digit hexadecimal number, have a high sensitivity
to structural features of a compound, and change if
the connectivity changes. Structure normalization is
performed for any incoming structure set to be regis-

FIGURE 6 | National Cancer Institute Computer Aided Drug
Design identifiers.

tered, or searched by, in CSLS. Each parent structure
is then subjected to a hashcode calculation to generate
the NCI/CADD identifier.

The normalization has adjustable levels of sensi-
tivity. The Fragment Isotope Charge Tautomer Stereo
(FICTS) identifier is a representation of the exact
structure drawing, sensitive to all the five features.
The FICuS identifier is not sensitive to tautomers
(‘u’ stands for ‘unsensitive’), and comes close to how
chemists perceive a chemical. The uuuuu identifier
links closely related forms. Currently, there are eight
identifier variants defined for a structure: FICTS,
FICTu, FICuS, FICuu, uuuTS, uuuTu, uuuuS, and
uuuuu. Three of them, FICTS, FICuS, and uuuuu, are
searchable for all the structure records in CSLS. Simi-
lar principles are used in Symyx’s Flexmatch search.98

Examples of Symyx’s NEMA keys, compared with
InChIKeys, are shown in Figures 7 and 8.

INTERCONVERSION

Broadly speaking, the more the information contained
in the representation of a structure, the more likely it
is that it will be faithfully convertible into another
representation. Interconversion of connection tables
is often possible. There is a difference between ‘file
format’ connection tables and those used internally
for algorithmic processing. The SMD format was not
intended to be universal database format, still less an
internal format for different systems. It was intended
as an interchange format allowing different programs
to exchange data with minimal need for conversion
routines.68

Connection tables can, as we have seen, be con-
verted to identifiers, but because there will be loss of
information it is not possible; for example, to con-
vert an InChIKey or a fingerprint into a connection
table. There are resolvers on the Internet that allow a
structure to be displayed for an InChI or InChIKey
and from that a connection table could be made.
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FIGURE 7 | Tautomers with different newly enhanced Morgan algorithm (NEMA) keys but the same InChIKeys. (Reprinted with permission
from Symyx Technologies, unpublished work)

Tools such as OpenBabel are also freely available for
converting between file formats. Digital Chemistry’s
MOLSMART can convert MDL (Symyx) structure
and reaction query formats to Daylight’s SMARTS
and SMIRKS strings, and MDL molfiles to Daylight’s
SMILES strings. A number of tools intended for view-
ing and editing molecular structures are also able to
read files in a number of formats and write them out
in other formats.

SPECIFIC CHALLENGES

Constructing a connection table, and identifier, for
many organic compounds is fairly straightforward
but certain structures present special problems.62 Fea-
tures such as aromaticity and tautomerism161,163 need
to be perceived. The CAS REGISTRY system uses
a ‘normalized’ bond type for all rings with alter-
nating single and double bonds; this includes some
systems that are not aromatic and omits some that
are. The process of normalization has already been
mentioned: a structure can be simplified down to its
‘core connectivity.’ Structure conventions, sometimes

called ‘business rules’ are applied to handle the dif-
ferent representations of substructures such as nitro
groups. Whether tautomers are ultimately recorded as
the same or different compounds163 will depend on
the application in question; for example, the represen-
tation of a chemical substance in a corporate database
might need to be independent of specific tautomeric
form, whereas spectral properties often require the
distinction between specific forms.

Many different systems are in use for handling
stereochemistry.164 Symyx numbers atoms around a
tetrahedral carbon atom with 1, 2, 3, and 4, in or-
der of increasing connection table atom number and
views the stereocenter so that the bond with atom
4 projects behind the plane formed by atoms 1, 2,
and 3. If the numbers increase clockwise, the parity
value is 1; if they increase counterclockwise, the par-
ity is 2. The parity value is stored at the node for
the stereocenter atom. A parity of zero is used for
no stereochemistry and a parity of 3 means unknown
stereochemistry. A bond type code is used to indicate
double bond stereochemistry.

Isomeric SMILES, which covers stereochemistry
and isotopes, has further increased the utility of

FIGURE 8 | Mesomers with the same InChIKey but different newly enhanced Morgan algorithm (NEMA) keys. (Reprinted with permission from
Symyx Technologies, unpublished work)
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FIGURE 9 | Types of variation in Markush structures. (Reprinted
with permission from Digital Chemistry, unpublished work)

canonical SMILES but it should be noted that that
OpenEye Scientific Software’s canonical SMILES,
Daylight’s canonical SMILES, ChemAxon’s canon-
ical SMILES, and so on, are all independent unique
descriptors. None of them can be used as interchange-
able indices in cheminformatics.

Multicenter bonds (as in ferrocene), coordi-
nation compounds, inorganic compounds, macro-
molecules and polymers, and incompletely defined
substances all present special problems. Some sys-
tems use ‘shortcuts’ or ‘superatoms’ for subunits (e.g.,
amino acids) of macromolecules to reduce the com-
plexity of the representation but, in principle, all the
atoms could be represented in the traditional manner.
There are two common approaches to polymer struc-
tures: monomer representation, in which the original
monomers are stored and additional information is
given textually, and structural repeating unit repre-
sentation, which stores the repeating units as short-
cuts, with details of their length, and so on.165–172

Generic Structures
Generic structures (also known as Markush struc-
tures) are important in chemical patents in which
the inventor claims a whole class of related com-
pounds. They can also be used to describe combina-
torial libraries173–175 (combinatorial chemistry allows
very large numbers of chemical entities to be syn-
thesized by condensing a small number of reagents
together in all possible combinations. A ‘chemical li-
brary’ is a set of mixtures or discrete compounds made
by one combinatorial reaction). A number of variants
are possible in patents (see Figure 9), although not all
of them are common in combinatorial libraries.

Early systems for storing and retrieving generic
structures used fragmentation code systems but these
were later supplemented (and to some extent re-
placed) by topological systems. In a compact repre-
sentation for a typical set of molecules, the common
parts are shown only once. The representation can
be considered as a formal ‘grammar’ for generating
valid molecules, but enumeration of the coverage of
a patent is usually impractical. In some cases, it is im-
possible; some patents represent an infinite number of
structures. Thus, suitable algorithms take advantage
of a Markush representation and avoid enumeration;
they compare finite grammars rather than infinite sets
of valid sentences.

Sheffield University ran an extended re-
search project on Markush structure storage and
retrieval176–193 from 1979 to 1994. This influenced
the development of commercial systems, although
independent work was also done at CAS, Derwent
(now Thomson Reuters), and Questel.96,194–196 At
Sheffield, two storage formats were designed: an ex-
ternal generic structure language, GENSAL,177 and an
internal extended connection table representation.179

The system involved a formalized version of the lan-
guage used in patent specifications, in a design anal-
ogous to a programming language. The GENSAL
Interpreter program181 generated the internal rep-
resentation based on partial connection tables with
links between them.

Reduced graphs were also applied at Sheffield in
generic chemical structure retrieval.183,188 Graph re-
duction involves the generalization of certain features
of chemical structures, resulting in a simpler graph.
For example, every ring might be replaced by a node
‘R.’ Reduced graphs can be searched more rapidly
(using a query whose graph is also reduced) because
the number of nodes is smaller. Reduced graphs have
since been successfully applied in similarity searching
and other drug discovery applications.197–200

The Sheffield generic structures system was
never implemented commercially but some of its con-
cepts were incorporated into two commercial sys-
tems: Markush DARC201–206 and MARPAT.203–208

Markush DARC was developed jointly by Questel
(the online host and software developer), Derwent
Information (now Thomson Reuters, producer of
the World Patent Index Markush database), and the
French Patent Office, which offered the PHARM-
SEARCH database. An integrated database, the
Merged Markush File is now available. MARPAT is a
software and database combination from CAS, avail-
able online on STN International. It is integrated with
the CAS REGISTRY database of specific compounds.
Commercial chemical information management
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systems such as that from Symyx are capable of han-
dling ‘R-group queries’ but are not true Markush
structure search systems. Digital Chemistry and
ChemAxon,209 and more recently InfoChem, have ex-
pertise in handling Markush structures. The possibil-
ity of in-house systems for patent searching210 is now
being discussed.

CHEMICAL REACTIONS

Representing chemical reactions presents a much
greater degree of complexity than searching structures
alone. Questions that need to be answered in a re-
action search include: ‘Which reactions convert com-
pound A to compound C’? ‘What happens when com-
pound A reacts with compound B’? ‘How do I make
compound C’? More complex still is a query rep-
resenting the substructural transformation in which
only the reacting substructures in the reactant and
product are specified.211,212 In addition, there might
be questions about the reaction conditions, and about
other functionality in the reactant that might be af-
fected by the reaction conditions. Even defining the
‘novelty’ of a reaction is not straightforward: how
much do the reagents, conditions, and yield need to
differ before the reaction becomes ‘different’?

The reaction center of a reaction is the collection
of atoms and bonds that are changed during the re-
action. Identifying the reaction center is a fundamen-
tal feature of a reaction storage and retrieval system.
Early reaction retrieval methods using fragments (vide
supra) and WLN39,40,211,213 are now of only histori-
cal interest; reaction searching is based on connection
tables (the Symyx RDfile was mentioned earlier). It
is possible to store a structure (as a connection ta-
ble) and label it as a reactant and to store another
structure and label it as a product, but searching for
a reaction that converts a ketone into an alcohol is
not the same as searching for reactions in which there
is a keto group in the starting material and an alco-
hol in the product. The latter will produce unwanted
hits where there is a keto group in the starting ma-
terial but it is unchanged by the reaction. Atom-to-
atom mapping214–216 ensures that the keto and alco-
hol groups are both in the reaction site (see Figure 10):
atoms on each side of the reaction can be numbered to
show which corresponds to which and similar map-
pings can be used in the reaction query. For large
databases, the mapping is usually done automatically
when the reaction is registered in a database, but map-
ping algorithms will be inaccurate in some cases. It is
also important to remember that the mapping takes
no account of the true reaction mechanism.

FIGURE 10 | Atom-to-atom mapping.

A method for detecting structural similarities in
pairs of reactant and product molecules known as
the maximum common subgraph (MCS) approach217

presents formidable computational challenges, but an
approximate MCS method and a method using ap-
proximate reaction sites as input to an exact MCS
routine were developed at Sheffield University.218,219

This work led to a number of commercial reac-
tion database systems,211 some of which are still in
use: REACCS (now part of Isentris and ISIS from
Symyx),212 CASREACT from CAS,220,221 and Beil-
stein CrossFire (vide supra) which has been updated
as Reaxys by Elsevier. Work is currently in progress
on a ‘reaction InChI’ or RInChI. The aim of the
RInChI project is to create a unique data string to
describe a reaction, using the InChI software.

Another reaction identifier has been used for
some years in reaction classification, to increase the
efficiency of reaction information retrieval (it can be
used, e.g., to cluster similar reactions if the number
of reactions retrieved is very large) and to provide
a chemically meaningful link between different re-
action databases. The algorithm CLASSIFY from In-
foChem is widely used for these reasons. It is based on
InfoChem’s mapping algorithm. Hashcodes are cal-
culated for all reaction centers, taking into account
atom properties. The sum of all reaction center hash-
codes of all reactants and one product of a reaction
provides the unique reaction classification code, the
ClassCode. Atoms in the immediate environment of
the reaction center (spheres) may be included for a
broad, medium, or narrow search: only reaction cen-
ters will give a large-sized cluster or hit list; reaction
centers plus alpha atoms, excluding hydrogens, will
give a medium-sized cluster or hit list; and reaction
centers plus beta atoms, excluding consecutive sp3

atoms, will give a small-sized cluster or hit list (see
Figure 11). Three hash-coded numbers are thus as-
signed to each reaction. CLASSIFY has also been used
to produce subsets222 of the SPRESIweb database.223

Retrosynthesis

Thus far, reaction retrieval systems have been dis-
cussed but there are also synthetic analysis programs,
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FIGURE 11 | InfoChem spheres around reaction centers.

which in turn can be divided into synthesis design
(also called synthesis planning) programs,224–229 re-
action prediction programs,226,228,230–235 and mech-
anism elucidation programs.236 Retrosynthetic analy-
sis (synthesis design) programs take an input molecule
and step by step deduce possible precursors, using spe-
cialized techniques to address the challenge of com-
binatorial explosion. Logic and Heuristics Applied
to Synthetic Analysis (LHASA)224,229 is the oldest of
these synthetic planning programs. It is an expert sys-
tem, relying on a knowledge base of reactions that is
manually constructed from reaction transforms coded
in a language developed specifically for LHASA.

Another program, Workbench for the Or-
ganization of Data for Chemical Applications
(WODCA),227,228 performs retrosynthesis in a logic-
oriented fashion, looking for promising available
starting materials by substructure and similarity
searches in catalogs of chemical suppliers, and search-
ing for strategic bonds to break in the target molecule
by means of calculated physicochemical effects.
WODCA has been superseded by THERESA that is
sold by Molecular Networks. Two other programs
use automated methods to generate the transforms
needed in a retrosynthesis system, and to address the
problem of combinatorial explosion: ARChem Route
Designer237 from SimBioSys (Toronto, Canada) and
InfoChem’s ICSYNTH.

3D STRUCTURES

The 2D representations discussed so far may be the
natural language of organic chemistry but in real-

ity molecules are 3D: the atoms can be positioned
in space in multiple conformations, more than one
of which may be a low energy form. Approaches
such as quantum mechanics that more accurately
reflect a molecule’s properties are too complex for
large numbers of structures, so other methods had
to be developed for representing conformers effi-
ciently. Gasteiger and coworkers238–240 at Erlangen
have worked for many years on representing 3D space
by means of physicochemical properties, in order to
predict reactivity (vide supra), spectra, and biological
properties.

In the 1990s, development of 3D structure
methods was spurred on by programs for the gen-
eration of 3D structures from 2D structures.241 The
two most widely used structure generation programs
are CONCORD242–244 and CORINA.214,244–246 Such
programs were particularly important in the early
1990s because at that time only a limited number of
experimentally determined 3D structures were avail-
able in databases. They are still used frequently for
deterministic 3D structures and in ligand prepara-
tion prior to searching in pharmacophore or docking
algorithms.

Experimental 3D Databases
The history of crystallographic databases goes back to
the early 1970s but it has taken many years for them
to grow. The Cambridge Structural Database247–250 is
the world repository of small molecule crystal struc-
tures. By December 2009, it contained more than
500,000 structures. The Protein Data Bank (PDB)
began as a grassroots effort in 1971. It has grown
from a small archive containing a dozen structures to
a major international resource for structural biology
containing more than 40,000 entries.251–253 It con-
tains information about experimentally determined
structures of proteins, nucleic acids, and complex
assemblies.

The Crystallographic Information File
(CIF)254,255 was adopted by the International
Union of Crystallography for the archiving and
electronic transmission of crystallographic data. The
macromolecular CIF (mmCIF)256,257 is an extension
of CIF, replacing the historical PDB file format. The
Molecular Information File was developed from
SMD and is compatible with CIF.258

3D Structure Representation
3D searches of databases such as the CSD, or of in-
house compound databases in the pharmaceutical in-
dustry aim to identify conformations that match the
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query. The most common 3D query is a pharma-
cophore. According to IUPAC,259 ‘a pharmacophore
is the ensemble of steric and electronic features that is
necessary to ensure the optimal supramolecular inter-
actions with a specific biological target structure and
to trigger (or to block) its biological response. A phar-
macophore does not represent a real molecule or a real
association of functional groups but a purely abstract
concept that accounts for the common molecular in-
teraction capacities of a group of compounds toward
their target structure. The pharmacophore can be con-
sidered as the largest common denominator shared by
a set of active molecules.’

In the case of 3D database, searching the phar-
macophore is defined as a set of features, such as
hydrogen bond donors and acceptors, positively and
negatively charged groups, and hydrophobic regions
and aromatic rings, together with their relative spatial
orientation. The spatial relationships can be specified
as distances or distance ranges or by defining the loca-
tions (coordinates) of the features together with some
distance tolerance. 3D substructure search is carried
out by a procedure analogous to 2D substructure
search, but in this case the query can be defined as a
group of atoms, with specified interatomic distances,
and both query and database structures are topologi-
cal graphs in which the nodes are atoms, but the edges
are interatomic distances.260,261 In early programs,
only one conformer was considered262–267 but in the
extension from ‘rigid’ to ‘flexible’ 3D searching, mul-
tiple conformers were included. The exploration of
multiple conformations can be tackled by generating
and storing multiple representative conformations or
by exploring conformational space ‘on the fly.’268–276

More recently, there has been increased use
of field- or shape-based approaches. The shape
comparison program Rapid Overlay of Chemical
Structures277 is used to perceive similarity between
molecules based on their 3D shape. The objective
of this method is to find and quantify the maximal
overlap of the volume of two molecules. Matches are
based only on volume overlap of optimally aligned
molecules; therefore, they are virtually independent
of the atom types and bonding patterns present in
the query and search molecules. The goal of the ap-
proach is to identify molecules that can adopt shapes
very similar to the query and in doing so increase the
chance of ‘scaffold hopping’ or ‘lead hopping.’

Cresset BioMolecular Discovery’s (Welwyn
Garden City, Herts, United Kingdom) approach278

uses molecular fields that provide a way of analyz-

ing the surface properties of molecules that in turn
allows an understanding of how the atomic structure
of a compound can be translated into biologically rel-
evant binding properties. The field point pattern is a
sophisticated ‘pharmacophore’ that can be used to de-
fine a template for binding. Molecules can be overlaid
using their fields, rather than structure, and the field
similarity between two molecules can be quantified
and converted to a similarity value. The expectation
is that modeling in ‘field’ rather than ‘structural’ space
will facilitate more innovative discoveries.

CONCLUSION

All the basic work on structure representation was
complete by the 1990s; research since then has largely
been into applications. There have, however, been
some significant developments over the past 20 years.
Efforts to standardize connection table formats were
not successful (partly because the molfile format had
become a de facto standard and CAS had another
proprietary standard), but the development of InChI
has renewed interest in a nonproprietary standard.
InChI is being actively developed by the InChI Trust,
but it does not yet cover as many ‘unusual’ structures
as some other systems do.

Contemporaneously, there has been much re-
search into text mining,8–13,279 much of it as yet un-
published or available only in conference proceedings.
Text mining recognizes chemical entities in journal
articles or patents and extracts them for conversion
to connection tables (and InChIs in some cases); re-
lated work converts images of chemical structures into
connection tables.280–285 Research continues into the
special problems of structure representation: more un-
usual forms of stereochemistry, polymers, and generic
structures, for example. There has also been renewed
interest in retrosynthesis of late.

The successful machine representation of chem-
ical structures has had an enormous impact on
progress in other fields, as is evidenced by the large
number of Wiley Interdisciplinary Reviews articles
related to this one. Using cheminformatics, chemi-
cal and pharmaceutical companies have been able to
prevent duplication of synthetic effort and have been
better able to handle patent information. In particu-
lar, the pharmaceutical industry has benefited from
systems that enable it to keep track of its inventories
and proprietary compounds, and from software that
makes drug discovery significantly faster and more
efficient.
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