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ABSTRACT: Prediction of CYP450 inhibition activity of small "*

molecules poses an important task due to high risk of drug—drug
interactions. CYP1A2 is an important member of CYP450 super-
family and accounts for 15% of total CYP450 presence in
human liver.

This article compares 80 in-silico QSAR models that were
created by following the same procedure with different combina-

tions of descriptors and machine learning methods. The training o
and test sets consist of 3745 and 3741 inhibitors and noninhibi-
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tors from PubChem BioAssay database. A heterogeneous external test set of 160 inhibitors was collected from literature. The studied
descriptor sets involve E-state, Dragon and ISIDA SMF descriptors. Machine learning methods involve Associative Neural
Networks (ASNN), K Nearest Neighbors (kNN), Random Tree (RT), C4.S Tree (J48), and Support Vector Machines (SVM). The
influence of descriptor selection on model accuracy was studied. The benefits of “bagging” modeling approach were shown.

Applicability domain approach was successfully applied in this study and ways of increasing model accuracy through use of
applicability domain measures were demonstrated as well as fragment-based model interpretation was performed.

The most accurate models in this study achieved values of 83% and 68% correctly classified instances on the internal and external
test sets, respectively. The applicability domain approach allowed increasing the prediction accuracy to 90% for 78% of the internal
and 17% of the external test sets, respectively. The most accurate models are available online at http://ochem.eu/models/Q5747.

l INTRODUCTION

The prediction of metabolism of molecules is of great interest
for drug discovery. Cytochromes P450 (CYP450) are a super-
family of enzymes, involved in metabolism of a large number
of xenobiotic compounds.’ CYP450 are involved in metabolism
of a large amount of drugs, currently present on the market.”
Individual CYP enzymes in families 1, 2, and 3 metabolize
xenobiotics, including the majority of small molecule drugs
currently in use.” The distinctive feature of CYP450 enzymes is
broad and overlapping substrate specificity.* Approximately 70%
of currently used drugs are cleared through metabolism and ten
CYP450 forms in human liver carry out virtually the whole CYP-
mediated metabolism. It is worth noting that most drugs, which
are cleared by the CYP system, are metabolized through several
CYP forms. As a general rule, drugs that are metabolized by a
single CYP form are more susceptible to drug interactions than
drugs metabolized by multiple forms.

The promiscuity with respect to substrates makes the CYP450
prone to inhibition by a large amount of drugs, which may lead to
clinically significant drug—drug interactions.>® Similarly to a
large number of other proteins, CYP450 enzymes are prone to
both competitive and noncompetitive inhibition. In competitive
inhibition, there is competition between the substrate and
inhibitor to bind to the same position on the active site of the
enzyme. In the noncompetitive mode of inhibition, the active
binding site of the substrate and inhibitor is different from each
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other. In the case of noncompetitive inhibition, the inhibitor
binds to the enzyme—substrate complex, but not to the free
enzyme entity. In practice, mixed-type inhibition displaying
elements of both competitive and noncompetitive inhibition
are frequently observed for CYP450 enzymes.

CYP450 inhibition can lead to decreased elimination of
compounds dependent on metabolism for systemic clearance.
If a drug is metabolized mainly via a single pathway, CYP
inhibition may result in an increased steady-state concentration
and accumulation ratio and nonlinear kinetics as a consequence
of the saturation of enzymatic processes. Especially with pro-
drugs, inhibition may result in a decrease in the amount of the
active drug form. Thus, inhibition of CYP may lead to toxicity or
lack of efficacy of drugs.® Therefore, early prediction of CYP450-
related activity of compounds may help to avoid the pursuit of
drug candidates with these undesirable effects.

CYP1A2 is a major enzyme in the metabolism of a number of
important chemicals, which typically belong structurally to the
group of planar polyaromatic amides and amines.” It accounts for
15% of total CYP contents in human liver and is responsible for
the metabolizm of approximately 5% of therapeutically used
drugs.g’9 Amitriptyline, ethoxyresorufin, caffeine, fluvoxamine,
phenacetin, theophylline, clozapine, melatonin, haloperidol,
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zolmitriptan and tizanidine are biotransformed predominantly
by CYP1A2."° CYP1A2, its partisipation in xenobiotics metabo-
lism and corresponding implications for drug development is an
intensivly studied topic in medicinal chemistry.""

Computational methods (including QSAR methods) are
especially attractive in the early stages of drug discovery since
they can be used for screening of virtual molecular libraries,
resulting in a dramatic decrease of potential candidates. The
successful use of QSAR methods for prediction of CYP450 (and
in particular CYP1A2) activity was shown.'>”'” However, the
previous studies were limited with respect to the number of
applied machine learning methods and diversity of descriptors as
well as the lack of a common approach to model evaluation and
the use of applicability domain methods.

In this article, we compared the performance of several
systematically developed QSAR models for CYP1A2 inhibition.
We built the models with a range of machine learning methods
on a variety of descriptor sets. Our goal was to understand how
the accuracy of prediction of CYP1A2 inhibitors depends on
the different machine learning methods and descriptor sets, in
particular descriptor selection, and to find the combination of
descriptors and machine learning methods that would yield
the highest predictivity. We also studied the influence of en-
semble and bagging approaches, as well as descriptor selection
approaches on resulting model predictivity. A fragment-based
approach to model interpretation was used to reveal several
fragments, possibly relevant to inhibitory activity. The benefits of
characterization of models’ prediction accuracies were demon-
strated for an application of the developed models to the external
heterogeneous data set collected from literature.

Another important goal of this study was to provide publicly
accessible models that could be easily used by chemoinfomatics
community to screen their compounds for CYP1A2 inhibition.
While there were many publications in this area, in most cases
the published models and data are not publicly available and can not
be used/tested by the community. The models developed in this
article are publicly accessible at http://ochem.eu/models/QS5747
and can be used online. Moreover, the use of these models
will allow to better evaluate the usefulness of HTS screen-
ing techniques and in silico approaches for idetification of CYP
inhibitors.

l DATA

PubChem data set. The structures and the inhibitor/non-
inhibitor labels for the compounds were collected from Pub-
Chem BioAssay database for human CYPI1A2 inhibition assay
with internal PubMed ID of AID410."® The description of the
BioAssay experiment shows that the demethylation of luciferin 6’
methyl ether (Luciferin-ME; Promega-Glo) to luciferin was used
as a target reaction for human CYP1A2 for this data set. The
luciferin was then measured by luminescence after the addition of
a luciferase detection reagent. The data set obtained from
PubChem contained 8348 compounds, out of which 4175 were
determined as active, 3673 — inactive, 713 — inconclusive. The
protocol summary of the assay is available from the assay page on
PubChem. The detailed protocol description is available in the
Promega-Glo technical bulletin."

Prior to any further analysis, all molecules were processed by
Chemaxon standardizer® and, if required, were dearomatized to
the Kekule representation. All the nitrogroups were converted to
a consistent representation. The molecules were neutralized and

all counterions and salts were removed. This procedure pro-
duced a number of duplicates, which were determined using
InChI keys. If the same molecule was in both “active” and
“inactive” sets or if a molecule was found in an “inconclusive”
set, as specified by PubChem, it was removed from all sets. This
was the case for 241 molecules. The number of nonconflicting
inconclusives was 543 compounds. There were also 66 mol-
ecules, that were duplicates within “inactive” or “active” lists, res-
pectively. As a result of this preprocessing a nonredundant set of
4016 active and 3470 inactive molecules (a total of 7486 mole-
cules) was formed.

Experimental accuracy of the PubChem data set. To have a
basis for comparison of model accuracy to the experimental
accuracy, we considered the inconclusive compounds in the data
set as experimental errors. Under these assumptions the experi-
mental error of the data set is 713/8348 = 0.085—9%. Since not
all inconclusive compounds should be treated as experimental
errors, this value is an overestimation. However, it provides a
lower boundary for accuracy estimation.

Test set of published CYP1A2 inhibitors. In addition to the
PubChem assay, a test data set with molecules collected from
literature was used to validate the accuracy of the models. The
compounds were introduced from a review article of human CYP
metabolism data." This article reported 160 CYP1A2 inhibitors,
collected from over 100 different sources (for some molecules
the values were confirmed in several articles). The inhibitors
were measured using several protocols and different sample
drugs and thus were more diverse as compared to the data that
was used to develop models in the current study. The molecules
were preprocessed similarly to the PubChem data.

B METHODS

Descriptors calculation. One of the goals of the study was to
determine the influence of different representation of molecules
on the quality of models for the CYP1A2 inhibitor prediction.
Three descriptors sets were used: fragments-base descriptors
(ISIDA SMF),*"** 2D topological descriptors (E-state)*>** and
a diverse set of 0D — 3D descriptors (Dragon).”® Below we
describe these descriptors in more detail.

ISIDA SMF descriptors were calculated using the fragmenta-
tion tool from the ISIDA suite.” The substructural molecular
fragments (SMF) method is based on the splitting of a molecule
into fragments. The fragment type is then a descriptor, and the
number of occurrences of this fragment in a molecule is the value
for this descriptor. Two different types of fragments are con-
sidered: “sequences” and “augmented atoms”. For each type of
fragment three subtypes can be defined AB (atom and bond
types), A (atom types only), and B (bond types only). In this
study the AB type descriptors were used. These descriptors were
shown to provide better performance compared to other two sets
in several previous studies.”' For the sequences, the length of
calculated fragments was limited to between 2 and 5 atoms. This
resulted into calculation of 3534 different descriptors for the
described data set.

Atom type E-state indices and molecular bond E-state
indices were calculated using a custom written tool that imple-
ments the procedures described in appropriate articles by Hall
and Kier.** These descriptors combine electronic and topological
properties of the described molecules. Each atom in the molec-
ular graph is represented by an E-state variable, which encodes
the intrinsic electronic state of the atom as perturbed by the
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electronic influence of all other atoms in the molecule within the
context of the topological character of the molecule. The E-state
index for an atom or bond consists of an intrinsic value for that
atom/bond plus a term for its perturbation by all the other atoms
in the molecule. For every atom type and bond type in the
molecule the calculated indices are summed. The total amount of
E-state indices for this data set was 425.

Dragon®® is a software tool licensed by Talete inc. The Linux
version of Dragon — dragonX 1.2.4, which calculates 1664
molecular descriptors, was used. These descriptors cover 0D -
3D descriptors which are arranged into 20 blocks. The 0D
descriptors are the descriptors independent of any knowledge
concerning the molecular structure. Examples of 0D descriptors
are total atom number, absolute or relative number of specific
atom types, absolute or relative number of specific bond types,
etc. The 1D descriptors are calculated over such one-dimensional
representations of a molecule as lists of fragments or functional
groups of interest present in the molecule. The 2D descriptors
are derived from two-dimensional topological representation
of the molecule and include topological information indices,
molecular profiles and 2D autocorrelation descriptors. The 3D
descriptors are base on a three-dimensional representation of
the molecule and include WHIM, GETAWAY and 3D-MoRSE
descriptors.*®

The total amount of descriptors produced by all three tools
was 5623.

3D structure generation. Since some of the used descriptors
require valid 3D structures, the Corina® software was used to
generate 3D conformations of molecules from their 2D repre-
sentations obtained on the previous step. All compounds were
converted to 3D structures without errors. The version of Corina
used in this study is 3.44 (14.05.2008). Corina tool by was chosen
for 3D conformation generation due to its high conversion rates,
ability to handle wide variety of atom types, and the reported
ability to generate conformations close to those obtained by
X-ray measurements.”” Corina was successfully used before in
other CYP450-related studies.”®

Selection of training and test sets. The initial PubChem
data set was randomly split into two subsets containing 3745 and
3741 records each. The first set was used as a training set, the
other one as a test set. Only the training set was used for model
development for all studies reported in this article. The test
set was used to get an unbiased estimation of prediction ability of
developed models. The training set contained 2014 inhibitors
and 1731 noninhibitor. The test set contained 2003 inhibitors
and 1738 noninhibitors.

Selection of descriptors. The models in this study were
created both with full set of descriptors and with the use of
descriptor selection procedure. The selection of the nonredun-
dant set of descriptors was performed using only the training set.
The descriptors were filtered by a “best first” search method
using “correlation-based feature subset selection” method as an
attribute evaluator, which is implemented in the Weka soft-
ware. The “best first” method searches the space of attribute
subsets by greedy hill-climbing augmented with a backtracking
facility. The “correlation-based feature subset selection” method
evaluates the worth of a subset of attributes by considering the
individual predictive ability of each feature along with the degree
of redundancy between them. Subsets of features that are highly
correlated with the class while having low intercorrelation are
preferred.*® The mentioned method of descr{sptor selection was
found to be efficient in other QSPR studies.'

Machine learning methods. Several popular machine-learning
methods that were found efficient for QSAR modeling were
used in this study. When applied to the same data sets, these
methods provide a basis for comparison of efficiency of each
method to predict CYP1A2 inhibitors. The analyzed methods
were Associative Neural Networks (ASNN),*"** k Nearest
Neighbors (kNN), Random Tree (RT),* C4.5 Tree (J48),**
and Supgort Vector Machines (SVM)*® as implemented in
LibSVM.”

kNN method predicts the target activity as an average value of
activities of its k nearest neighbors. The comparison is performed
in space of descriptors and Euclidian distance was used.

ASNN is a combination of an ensemble of feed-forward neural
networks and the kNN. This method’s main feature is neural
network ensemble bias correction achieved by the kNN method.
The metrics used for kNN is correlation between the responses
of individual neural networks in an ensemble. Therefore, the
corrections are performed in space of ensemble residuals.

RT is a Weka® implementation of the random decision tree
algorithm. It is a decision tree with no pruning and considering
only log,(N) of descriptors in each node (where N is a total
amount of available descriptors).

J48 is a Weka implementation of the C4.5 pruned decision
tree. It tries to recursively partition the data set into subsets by
evaluating the normalized information gain (difference in en-
tropy) resulting from choosing a descriptor for splitting the data.
The descriptor with the highest information gain is used on every
step. The training process stops when the resulting nodes contain
instances of single classes or if no descriptor can be found that
would result to the information gain.

SVM used in this study is a kernel-based classification method.
In this method the input variables are mapped to a higher
dimensional space by the use of a kernel function and are then
classified by constructing a hyperplane in this space. In this study,
the radial basis function kernel was used.

All the methods were also used in a combination with the
bagging approach.®” In each bagging session, 100 models were
developed. For each model a training set was obtained from
the original training set by resampling with replacement (each
generated replica was of the size of the original set, and was
created by randomly choosing entries, duplicates were allowed).
The result of each classification was determined by voting among
100 models over the classified sample. Mean values and stan-
dard deviations of model predictions over each class for a specific
instance were used to evaluate the confidence of predictions.
This approach is discussed in the applicability domain section of
this paper.

Prediction quality assessment. For binary classification
models, there is a number of established metrics that identify
model performance. In the definitions below numbers of true
positives, true negatives, false positives, and false negatives are
denoted as TP, TN, FP, FN, respectively.

In this study, the accuracy

TP + TN

ACC =
TP+ FP + TN + EN

was used as the main measure of model performance in all
statistical tests.
The weighted accuracy

TP TN
WACC = 0.5( >

TP+FN+TN+FP
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and Matthew’s correlation coeflicient

TP x TN — FP X FN

MCC =
\/(TP + FP)(TP + EN)(TN + FP)(TN + FN)

were also calculated to characterize the predictivity of the studied
models.

The bootstrap statistical test®® was used to estimate the
significance of the differences in model performance. For
this test, 10000 of replicas were generated by resampling with
replacement from the analyzed set. The 0.0S confidence value
was chosen, ie. conclusion of significant differences in models
performance was made if one model performed better than the
other on more than 95% of the replicas. All the models were then
compared in a pairwise manner.

Applicability domain assessment. The developed models
do not have the same performance for all possible chemicals.
Thus, it is very important to distinguish reliable and nonreliable
predictions: the former predictions can be used in place of
experimental measurements while latter ones should be tested
in experiments. This can be done using “applicability domain”
techniques. AD methods rely on finding a measure that correlates
with the accuracy of predictions (this measure is referred to as
distance to model, DM>?). This way it is possible to predict the
model accuracy for a particular compound and select a subset of
most confident predictions.

In this study we ap3p1ied the recently published “distance to
model” - PROB-STD>**® DM, which can be easily, calculated
using bagging and ensemble approaches. This measure was
successfully used in our preliminary study of CYP450% set as
well as it is analyzed in details using AMES challenge set.*

It is defined as

+oo

N(x,y(J), dstp(J))dx

/_ N0 dsro(1)ds

dprog—stp(J) = min

where y(]) is a quantitative value of prediction for compound J,
dsrp(]) is the standard deviation of predictions for this com-
pound, N(xy(J),dsrp(J)) is the normal distribution density
function with mean y(J) and standard deviation dgrp(J). The
y(J) and dgrp(]) are calculated over a set of predictions for a
molecule in an ensemble or bag of individual models.

This distance to model has a natural interpretation. For a
compound classified as {+1}, the square of dprop.srp(J) will
correspond to the probability of compound’s classification to the
opposite class, i.e. {-1} and vise versa.

Model interpretation. The significant number of descriptors
and the nonlinear character of all the machine learning methods
used in this study make the descriptor-based approach to model
interpretation infeasible. Additinally, descriptor-based approach
is less useful for decision-support purposes in drug candidate
optimization, as structural changes to the molecule cause the
change of the whole set of related descriptors. A fragment-based
approach was adopted instead, where model predictions are
grouped in a fragment-based manner.

Among over 2 million possible molecular subfragments of our
data set we selected around 15 thousand that appeared in at least
10 molecules in a data set. For each fragment, we calculated the
number of inhibitors and noninhibitors containing this fragment,

as well as the number of correctly and incorrectly classified
instances containing this fragment.

Based on that a specific group of fragments of interest was
separated: fragments specific for inhibitors (ratio of inhibitor
molecules containing these fragments to noninhibitor molecules
more than ten). This group was analyzed in terms of model
performance.

Model availability. The study was performed with the
use of Online Chemical Modeling Environment (OCHEM) -
http://ochem.eu. The OCHEM is a web-based platform that
aims to automate and simplify the typical steps required for
QSAR modeling and provides facilities for collaboration in
QSAR studies, exchange of data and for publication of results.*’
It allows to store and share QSAR data sets and models and to
compare results and approaches.

Models published at OCHEM are easily reproducible - the
training and test sets are public, the model building workflow is
described in details, and all the tools involved in model creation
(molecule preprocessing tools, descriptor calculation and filter-
ing programs, machine learning methods) are available. Model
description also includes all the parameters for every node of the
model building workflow.

Some of the best performing models in this study along with
the data used for their creation are freely and publicly available for
verification and usage at http://ochem.eu/models/QS5747.

B RESULTS AND DISCUSSION

The main goal of this work was to compare the accuracy of the
CYP1A2 classification models built with different machine
learning methods on different sets of descriptors.

There were 4 parameters that were benchmarked in this study:

e machine learning method (ASNN, KNN, RT, J48, SVM)

o ensemble approach (single model, ensemble (for ASNN)/

bagging (for other methods))

o descriptor set (E-state, SMF, Dragon, Full set)

o descriptor selection protocol (Full set, Selected set)

Given all possible combinations, the total of 80 different
models were generated and compared. Table 1 displays 20 top
performing models out of these 80. The selection was performed
based on overall model accuracy (ACC). The table contains the
details of each model (descriptor set, machine learning method,
ensemble approach) as well as additional accuracy measures -
weighted accuracy (WACC) and Matthew’s correlation coeffi-
cient (MCC). The table is divided into three groups. Within each
group the models are statistically nonsignificantly different to the
top model in the group with the significance level of 0.05.

To investigate the influence of the studied parameters of
models on their test set accuracy, the cumulative plots were built.
First, the models were sorted according to ACC in descending
order and n top-performing models were selected. Second,
amonyg the list of n-top ranked models the percentage of models
of each particular machine learning method was calculated.
Figure 1a shows the calculated percentage of models, built by a
particular machine learning method (y axis) among the n top-
performing models (x axis). Number n changes from S to 80 with
a step of 5 models. Methods with higher areas in the left part of
the plot had higher performance.

Figure 1b uses the same concept to illustrate the difference in
descriptor performance, while figure 1c shows the performance
of ensemble versus single method.
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Table 1. The performance of best 20 models for the internal test set of 3741 of CYP1A2 inhibitors and noninhibitors from

PubChem BioAssay database

DESCR SEL METHOD ENSEMBLE
1 All no ASNN ensemble
2 All no J48 bagging
3 All yes J48 bagging
4 Dragon no J48 bagging
N Dragon yes RT bagging
6 All yes RT bagging
7 SME no J48 bagging
8 Dragon no ASNN ensemble
SMFE no SVM single
10 E-state no RT bagging
11 Dragon yes J48 bagging
12 All yes ASNN ensemble
13 SMF no ASNN ensemble
14 Dragon no ASNN single
15 All no RT bagging
16 E-state no ASNN ensemble
17 E-state no SVM bagging
18 E-state no SVM single
19 Dragon no RT bagging
20 SMF no RT bagging

ACC WACC MCC SENS SPEC
0.827 0.827 0.653 0.827 0.827
0.827 0.827 0.653 0.827 0.827
0.823 0.823 0.645 0.823 0.823
0.820 0.821 0.640 0.807 0.83S
0.820 0.819 0.638 0.833 0.804
0.820 0.818 0.637 0.846 0.789
0.819 0.819 0.637 0.819 0.819
0.818 0.819 0.636 0.804 0.833
0.818 0818 0.635 0.818 0.818
0.817 0.818 0.634 0.803 0.832
0.814 0.814 0.627 0.814 0.814
0.813 0.813 0.625 0.813 0.813
0.812 0.813 0.624 0.798 0.827
0.811 0.816 0.633 0.74S 0.886
0.811 0811 0.621 0811 0.811
0.810 0.810 0.619 0.810 0.810
0.810 0.812 0.622 0.783 0.840
0.809 0.812 0.622 0.769 0.854
0.809 0.808 0.616 0.822 0.793
0.808 0.807 0.614 0.821 0.792

ASNN — Associative Neural Networks,>"** RT and J48 — random trees and C4.5 pruned trees as implemented in WEKA,* SVM -
support vector machines as implemented in LibSVM.*® Dragon - descriptor software by Talete inc.,”> SMF - substructural molecular
fragments as implemented in ISIDA,”' E-state - electrotopological state indices.”*
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Figure 1. cumulative charts of share of models of each type among the top-performing models. The horizontal axis displays the amount of top
performing models taken into account; the vertical axis displays a share of each type of machine learning methods, descriptors or ensemble approaches
among these models. Larger areas (J48 and ANN, Dragon and All, Bagging) demonstrate more successful approaches.

Comparison of machine learning methods. Among the
used methods, best performances were achieved with J48, ASNN
and RT methods. J48 and ASNN produced the models with the
highest performance using the full set of descriptors. However,
when considering the applicability domain of models and 90%
threshold, as discussed below, the ASNN method performed
better. There were also several other models that were statisti-
cally nonsignificantly different to the most accurate ones with the
significance level of 0.05. The models produced by the SVM and
KNN methods were significantly less accurate as compared to
the top-performing ones. The KNN was also the only machine

1275

learning method that didn't produce a model within top 20 most
accurate models. Thus, this method had a lower performance
than other machine learning methods analyzed in our work.
Comparison of descriptors. The full combined set of
descriptors showed the highest accuracy in most cases. When
used separately, Dragon descriptors demonstrated the highest
performance, with E-State and SMF performing approximately
equally accurate. These results show, that a combination of the
descriptor sets calculated with different approaches brings new
information to the model and increases its performance. It is
important to note that Dragon (and, as a result, the full set)
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Figure 2. Prediction accuracy of a model for a particular group of
molecules from an internal test set as a function of PROB-STD.
Different colors stand for different models.

includes 3D descriptors. Therefore the high performance
values for models including Dragon descriptors may demonstrate
the importance of 3D information for modeling CYP1A2
inhibition activity. On the other hand, the generation of 3D
structures can be a limiting step and can significantly increase the
time required for application of models using these sets of
descriptors.

Bagging/ensembles work better compared to the single
models. The charts at Figure 1 demonstrate that bagging/
ensemble methods performed better then single-models. Table 1
confirms this result and also indicates that bagging and ensemble
approaches significantly improved the performance of ASNN,
RT and J48 models. However, these approaches had less or no
influence on the KNN and SVM models. The KNN and SVM
methods are more stable and are less influenced by distortions of
the training set due to bagging. The former three methods,
however, have a stronger intrinsic variability and models calcu-
lated with such methods using different bagging replica have
larger variations. The standard deviations of predictions for test
set molecules were 0.37, 0.34, and 0.32 for RT, ASNN and
J48 methods, respectively, while they were only 0.12 and 0.15
for KNN and SVM, respectively. These standard deviations
were calculated using 100 models from ensemble (ASNN) and
bagging (all other methods), respectively. This result indicates
that methods with higher variation of predictions (RT, ASNN
and J48) had a higher gain from using ensemble approach, as it is
clear from Table 1. This result is in agreement of previous
conclusions of Breiman,®” who reported similar results by con-
sidering bias and variance of models. He assumed that methods
with higher variation of results may have lower bias and their
low performance could be mainly due to higher variation of
their predictions. The average of predictions of such methods
decreases their variance and improves their accuracy. The
performances of more stable methods (e.g, SVM, KNN) are
to alarger degree dependent on their biases. Therefore, the use of
ensemble approach does not improve their accuracy.

The increase of model accuracy came at a price of increasing
usage of computational resources both for training and applica-
tion of a model. In the presented study the bag (for RT and J48)
and an ensemble (for ASNN) consisted of 100 model instances.
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Figure 3. Average prediction accuracy of a model on a fraction of the
internal test set as a function of the size of this fraction (compounds
ordered by PROB-STD). Different colors stand for different models.

This led to a 100 times increase of computational time required
to create and apply these models.

Descriptor selection does not improve results. In this study
the models trained on the preselected set of descriptors per-
formed generally worse, than those trained on the full set of
descriptors. These results indicate that the used descriptor
selection strategy was not the optimal for the analyzed methods.
These results contradict the conclusions of another study'®
where the same strategy was found to increase the accuracy of
models. However, at the same time we found that the descriptor
selection at least did not decrease the performance of RT and J48
methods, which performed nonsignificantly different with or
without variable selection for some sets of descriptors.

Applicability domain of models. Figures 2 and 3 show two
different chart types that illustrate the ability to differentiate
accurate and inaccurate predictions for CYP1A2 models using
the PROB-STD DM.

The charts are plotted for the internal test set compounds
sorted by PROB-STD. Figure 2 displays the accuracy of predic-
tions calculated as simple moving average over a window of 200
compounds. The plot shows the percentage of correct predic-
tions in a window for each particular value of PROB-STD
measure. The plot has a general downward trend that shows a
strong correlation of the prediction accuracy and a DM.

Figure 3 represents cumulative accuracy-coverage plots. This
chart displays prediction accuracy (y axis) for a group of com-
pounds, having DM less than some threshold against percentage
of this group of compounds in the whole set (x axis). The
plot starts from high accuracy values (for compounds with low
PROB-STD measures) and drops to the level of 0.83 - the
average accuracy for the whole set. In particular, this chart
shows us, that top 70%-75% of the internal test set, ordered by
PROB-STD values, can be predicted with an average accuracy
of 90%.

As we can see, the behavior of the plots is similar for different
models. This means the PROB-STD DM worked universally,
and was successfully used with all sets of descriptors and machine
learning methods, as long as ensemble or bagging approach
was taken.
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Figure 4. Inhibitor-specific fragments of the data set.
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Interpretation of modeling results. One more common area
of application of QSAR models, except for early stage filtering of
potential drug candidates, is guiding the drug candidate optimi-
zation process. Easily interpretable models may provide useful
insight on the structural changes to the molecule that are
required for it to obtain some desired property. In this study
we adopted a fragment-based interpretation approach, as de-
scribed in the “Methods” section.

Figure 4 displays the inhibitor-specific fragments that appear
in the biggest amount of molecules in a data set along with
sensitivity/specificity values. The sensitivity and specificity values
are given for the whole data set of 7486 molecules, model results
are obtained from a 5-fold cross-validated model built by the
“best approach” - ASNN, the full descriptor set with no descrip-
tor selection. That is, the initial full data set was randomly split to
five folds and five ASNN models were built, one of the folds
participating as a test set and the other four combined — a
training set for each single model. This way we receive valid
predictions for the whole data set, i.e. each model in 5-fold cross-
validation predicted 20% molecules.

The fragments at Figure 4 account for 2123 inhibitors, which is
around 53% of all inhibitors in the data set. All these molecules
were correctly classified as inhibitors. This number is smaller
than the sum of individual fragment values since some molecules
contain two or three of the presented fragments.

A total number of 145 noninhibitor molecules contained these
five fragments. Only 30 of them were correctly classified as
noninhibitors.

The common pattern for these fragments is 100% sensitivity
(all inhibitor molecules containing these fragments were cor-
rectly classified as inhibitors) but low 5 — 40% specificity (only
30 out of 145 noninhibitor molecules containing these fragments
were correctly classified as noninhibitors, which results to overall
21% specificity for the molecules containing these fragments).

The fragments in Figure 4 are clearly associated with inhibition
activity. This result is in agreement with other studies of CYP1A2,
which indicate that planar aromatic groups participating in 77—
interactions are the essential requirement for CYP1A2 substrates
and inhibitors.”**~* It is interesting that four of five identified
fragments contain pyrimidine fragment. This finding provides a
testable hypothesis on the importance of these fragments for
CYP1A2 inhibition that can be verified experimentally.

External set result. In this part of the study we applied the
models to an external data set. As a test set we used 160 inhibitors

Table 2. The performance of best 20 models for the external
test set of 160 of CYP1A2 inhibitors

DESCR SEL METHOD ENSEMBLE ACC ACC (AD)
1 Al no ASNN ensemble 0.68 0.90
2 Al no J48 bagging 0.65 0.87
3 Al yes J48 bagging 0.66 0.85
4  Dragon no J48 bagging 0.65 0.82
S  Dragon yes RT bagging 0.70 0.85
6 Al yes RT bagging 0.68 0.80
7  SMF no J48 bagging 0.66 0.87
8 Dragon no ASNN ensemble 0.68 0.80
9 SMF no SVM single 0.65 -
10  E-state no RT bagging 0.63 0.82
11  Dragon  yes J48 bagging 0.61 0.77
12 Al yes ASNN ensemble 0.62 0.74
13 SMF no ASNN ensemble 0.63 0.77
14 Dragon no ASNN single 0.61 -
15 Al no RT bagging 0.59 0.77
16  E-state no ASNN ensemble 0.69 0.85
17  E-state no SVM bagging 0.61 0.69
18  E-state no SVM single 0.60 -
19 Dragon no RT bagging 0.61 0.69
20 SMF no RT bagging 0.65 0.77

ASNN — Associative Neural Networks, RT and J48 — random
trees and C4.5 pruned trees as implemented in WEKA,”
SVM - support vector machines as implemented in LibSVM.*®
Dragon - descriptor software by Talete inc.,”* SMF - substructural
molecular fragments as im4plemented in ISIDA,*° E-state - Electro-
topological state indices.”* ACC — average model accuracy on an
external test set. ACC(AD) — average model accuracy on a part of
an external test set within AD of the model.

of CYP1A2 obtained from literature. These data were measured
using different approaches and etalon reactions and thus were
expected to have a high amount of variability. The molecules
from this data set were diverse and did not appear in the training
set for the evaluated models. The overall accuracy of prediction
for this external data set was 59% - 68% of correctly classified
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Figure 5. Average estimated and calculated accuracies of the ASNN
model (Table 1) for the external test sets for compound predictions
ordered by PROB-STD.
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Figure 6. Distribution of number of compounds by PROB-STD values.

instances. The WACC and MCC measures could not be calculated
because the set contained only instances of one class (inhibitors).

Table 2 shows the external set accuracy of the 20 top models. It
also displays the accuracy of those molecules, which where in the
applicability domain of the models (as described in the AD-
related section of the article).

Figure S represents cumulative accuracy-coverage plot of
expected and observed accuracies of the ASNN model built on
full descriptor set with no descriptor selection.

We can see in Figure S that on the qualitative level the behavior
of the accuracy-coverage plot of the external test set is similar to
that of the internal test set. Apparently the accuracy of the model
on the external test set was significantly lower than on the internal
test set. This is not surprising, since the diversity of molecules in
this set is higher. If we order the compounds by PROB-STD, the
accuracy increases to 90% of correctly classified compounds for
about 20% external test set molecules. When we take into account
the whole 100% of compounds, the accuracy drops to 68%.

Figure 6 shows the distribution of molecules in the internal
and external test sets by PROB-STD values. Both sets have a high
amount of molecules (18% for the external test set and 34% for
the internal one) with PROB-STD between 0 and 0.05 - these
molecules contribute to the highest accuracy of predictions. For
the external test set, the molecules are distributed more evenly
over the range of PROB-STD values - a consequence of a lower
overall accuracy of the model on this set.

B CONCLUSIONS

In this paper, different QSAR approaches for the prediction of
CYP1A2 inhibition were compared. Dragon, E-State and ISIDA
SME descriptors were used. The kNN, SVM, ASNN, RT and J48
methods were studied. Models built on part of PubChem
BioAssay data set were applied to predict a test set from the
same source, as well as an external data set, collected from
literature.

ASNN neural networks in combination with the full descriptor
set calculated the highest accuracy, which was 83% of correctly
classified instances on the internal test set. This result is about
5% higher than the previously published results using the same
data set.'® Several other models (including J48 and RT in
combination with bagging approach) showed results, statistically
nonsignificantly different to the top performance model.

In a majority of cases the models built on the full set of
descriptors outperformed the models built on preselected sets of
descriptors.

For neural networks, random tree and J48 tree the bagging/
ensemble approach allowed a statistically significant increase of
performance.

Increasing the number of different types of descriptors had the
positive effect on the model accuracy. The most accurate models
in this study included Dragon 3D descriptors. This showed the
importance of molecule 3D information for the modeling of
CYP1A2 inhibition activity.

The models were applied to the heterogeneous external test
set and achieved the accuracies of 59% - 68% correctly classified
instances. This result is expected since the molecules in external
set were less similar to the training set compounds compared to
the molecules used as the internal test set according to PROB-
STD DM (see Figure 6). The lower accuracy of the model for the
external set can be also explained by a wide variety of protocols
and criteria used to measure CYP1A2 inhibition activity. Using
the PROB-STD measure allowed us to identify about 20% of
external set compounds, for which the average accuracy of
predictions was 90%.

Several molecular fragments in the studied data set (such
as pteridin-7-one, quinazoline, 2-methyltiophene) were mostly
present in CYP inhibitors. This result is in correspondence
with numerous CYP1A2 studies using docking approaches,
which indicate an importance of 71— interactions for CYP1A2
inhibition.

The models were created using the Online Chemical Model-
ing Environment (OCHEM).*" The top performing models are
available at OCHEM at http://ochem.eu/models/QS5747.
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