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REVIEW

Getting the most out of PubChem for virtual screening
Sunghwan Kim

National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Department of Health and Human
Services, Bethesda, MD, USA

ABSTRACT
Introduction: With the emergence of the ‘big data’ era, the biomedical research community has great
interest in exploiting publicly available chemical information for drug discovery. PubChem is an
example of public databases that provide a large amount of chemical information free of charge.
Areas covered: This article provides an overview of how PubChem’s data, tools, and services can be
used for virtual screening and reviews recent publications that discuss important aspects of exploiting
PubChem for drug discovery.
Expert opinion: PubChem offers comprehensive chemical information useful for drug discovery. It also
provides multiple programmatic access routes, which are essential to build automated virtual screening
pipelines that exploit PubChem data. In addition, PubChemRDF allows users to download PubChem
data and load them into a local computing facility, facilitating data integration between PubChem and
other resources. PubChem resources have been used in many studies for developing bioactivity and
toxicity prediction models, discovering polypharmacologic (multi-target) ligands, and identifying new
macromolecule targets of compounds (for drug-repurposing or off-target side effect prediction). These
studies demonstrate the usefulness of PubChem as a key resource for computer-aided drug discovery
and related area.
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1. Introduction

Thanks to high-throughput screening (HTS) [1,2] technology
and combinational chemistry [2,3], small research laboratories
in academic institutions now can generate bioactivity data for
a large number of molecules at a low cost. Through data
mining and manual curation, many groups can also collect a
substantial amount of chemical information from various
sources, including scientific articles and patent documents. In
addition, funding agencies have introduced data sharing poli-
cies for studies that they support, and journal publishers
require the authors of papers to make underlying data pub-
licly accessible. All these recent trends have led to a rapid
growth in chemical information available in the public
domain. With the emergence of the big data era, there is a
great interest from the biomedical research community in
exploiting this public information for virtual screening (VS)
[4,5], which uses computational techniques to explore a
large compound library to select a small subset of potentially
bioactive molecules that are tested in subsequent in vitro and
in vivo experiments. VS is an essential part of modern drug
discovery and has been reviewed in many articles [4,5].

PubChem [6–8] is a public chemical information archive
developed and maintained by the U.S. National Institutes of
Health (NIH). PubChem collects chemical substance descrip-
tions and their biological activities from hundreds of data
sources and provides them to the public free of charge. With
receiving millions of requests from tens of thousands users per
day, PubChem serves as a key resource for biomedical science

communities in many areas, including cheminformatics, che-
mical biology, medicinal chemistry, and drug discovery.
Detailed information on PubChem is given elsewhere [6,7].

There have been great interest in using PubChem for VS. In
some studies [9,10], 3-D structures of compounds downloaded
from PubChem were used for molecular docking. In other
studies [11,12], PubChem was searched for molecules structu-
rally similar to known active compounds using similarity
search [11] or for compounds with a particular scaffold
through substructure search [12]. PubChem was also screened
using various predictive models to identify compounds with
desired bioactivity [13–20]. Importantly, many studies [21–35]
used bioactivity data archived in PubChem to develop bioac-
tivity or toxicity prediction models [24–35]. In addition,
PubChem data were used to build computational models to
predict adverse drug reactions [36,37]. Recently, ‘dark chemi-
cal matter’ [38] in PubChem, defined as compounds that have
never shown bioactivity after being tested repeatedly in many
HTS experiments, has attracted much attention as a promising
starting point for discovering lead molecules.

The present paper reviews important aspects of PubChem
in the context of its application for VS. A brief overview of
PubChem is given, including data organization as well as data
contents relevant to VS. Information on chemical vendors and
patents for compounds in PubChem is also discussed, which
helps prioritize hit compounds for subsequent in vitro or in
vivo screenings. In addition, this paper describes programma-
tic access to PubChem data, which is critical for building
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automated VS pipelines, and PubChemRDF, which facili-
tates integration of PubChem data with other resources
useful for VS. A review of some important publications is
given to explain how PubChem resources are used for
developing bioactivity and toxicity prediction models, dis-
covering polypharmacologic (multitarget) ligands, and
identifying new macromolecule targets of chemicals (for
drug repurposing or off-target side-effect prediction).
Other relevant topics, such as dealing with active/inactive
compound imbalances in PubChem’s bioactivity data and
developing benchmarking data sets for VS from PubChem
data, are also discussed.

2. An overview of PubChem as a resource for VS

2.1. Data organization and chemical space coverage in
PubChem

PubChem [6,7] contains chemical substance descriptions and
biological activity information, contributed by more than 400
data contributors [39]. While PubChem’s data are primarily

about small molecules, they also include other molecular enti-
ties, such as small-interfering RNAs and micro-RNAs, peptides,
lipids, carbohydrates, chemically modified macromolecules,
and many others.

PubChem organizes these data into three primary data-
bases: Substance, Compound, and BioAssay (Figure 1) [6,7].
The Substance database [6,40] archives chemical substance
descriptions submitted by individual data contributors. The
Compound database [6,41] stores unique chemical structures
extracted from the Substance database through the PubChem
standardization process. The BioAssay database [7,42] contains
the descriptions of biological assay experiments and bioactiv-
ity data for substances tested in the assays. The records in the
Substance, Compound, and BioAssay databases are called
substances, compounds, and assays, respectively. Similarly,
SID (Substance ID), CID (Compound ID), and AID (Assay ID)
are used as the record identifiers for the Substance,
Compound, and BioAssay databases, respectively. As of May
2016, PubChem contains more than 219 million substances, 89
million compounds, and 230 million bioactivity outcomes from
more than 1 million assays covering around 10,000 unique
protein sequences.

There has been much interest in analyzing the chemical
space covered by molecules in PubChem. Especially, many
studies [43–47] have compared PubChem’s chemical space
with those of other public databases of known molecules,
such as DrugBank [48] and ChEMBL [49], as well as those of
databases of ‘virtual’ molecules, such as chemical universe
databases GDB-11 (26.4 million molecules with up to 11
atoms of C, N, O, and F) [43], GDB-13 (977 million mole-
cules with up to 13 atoms of C, N, O, S, and Cl) [44], and
GDB-17 (166.4 billion molecules up to 17 atoms of C, N, O,
S, and halogens) [45]. As shown in Figure 2, 68.7 million
compound records in PubChem (77% of the total) are
drug-like compounds that satisfy Lipinski’s rule of 5 [50].
Among them, 10.3 million (12% of the total) are fragment-
like ones, which satisfy Congreve’s rule of 3 [51].

Article Highlights

● PubChem is the largest source of publicly available chemical informa-
tion, collected from more than 400 data sources.

● In addition to bioactivity data generated through high-throughput
screenings, PubChem contains a substantial amount of bioactivity
information extracted from scientific articles.

● Chemical vendor and patent information for compounds in PubChem
helps prioritize hit compounds for further screening.

● PubChem supports programmatic access to its data, allowing for
building an automated virtual screening pipeline.

● PubChemRDF allows users to download PubChem data on a local
computing facility and integrate them with their own data.

● PubChem data can be used for developing computational prediction
models for bioactivity or toxicity of molecules.

This box summarizes key points contained in the article.

Figure 1. Data organization in PubChem. Chemical information deposited by more than 400 data contributors is organized into three primary databases: substance,
compound, and Bioassay.
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2.2. Bioactivity data in PubChem

Figure 3 shows the distribution of PubChem compounds
according to the availability of bioactivity data. Currently, 2.1
million compounds in PubChem have been tested in any assay
in PubChem, corresponding to 2.4% of all 89.1 million com-
pound records. About half of these tested compounds (1
million compounds, 1.1% of all compounds) have been
declared to be active in at least one assay. About 509,000
compounds had an activity concentration between 1 nM and
1 μM, and 39,000 compounds had an activity concentration of
1 nM or below.

The majority of bioactivity data contained in PubChem
were generated from HTS. Because HTS campaigns aim to
identify hit molecules from a large compound library, HTS
data typically contain a large number of inactive compounds
with only a handful of active compounds, which are tested
further in low-throughput experiments. Although advanced
HTS technologies such as quantitative HTS (qHTS) [52] allow
for getting bioactivity data at multiple compound concentra-
tions in a single experiment, HTS is often run at a single
concentration, and therefore, there is no guarantee that hit
molecules from such HTS experiments would perturb the

biological system in a dose–response way. In addition, HTS
data may contain false hits, for example, due to aggregators
[53], which nonspecifically bind to multiple unrelated proteins,
or autofluorescent compounds [54], which can emit light in
the absence of artificial fluorescent markers used in fluores-
cence-based HTS assays. For these reasons, HTS data are con-
sidered to have low qualities in general.

However, PubChem also contains a substantial amount of
high-quality bioactivity data extracted from scientific articles
through manual curation or data mining [55], which com-
plement the HTS data contained in PubChem. These data
are contributed by various PubChem depositors, including
ChEMBL [49], PDBbind [56], BindingDB [57], and IUPHAR/BPS
Guide to Pharmacology [58]. Data from these contributors
cover different chemical domains from each other [55]. For
example, ChEMBL [49] manually extracts bioactivity data
from peer-reviewed papers published in journals in the
medicinal chemistry and natural product domains. PDBbind
[56] collects experimentally measured binding affinity data
for biomolecular complexes in the Protein Data Bank (PDB)
[59]. BindingDB [57] provides binding affinities, focusing
chiefly on the interactions of protein considered to be

Figure 2. Chemical space covered by PubChem. Panel (a) shows the proportion of compounds that satisfies Lipinski’s rule of 5 (Ref [50].) and Congreve’s rule of 3
(Ref [51].). Panel (b) shows the proportion of compounds that satisfy all criteria of Lipinski’s rule of five (Ro5), and those that violate one, two, three, and four criteria
of the rule of five (Ro5–1, Ro5–2, Ro5–3, and Ro5–4), respectively.
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drug targets with drug-like small molecules. The Guide to
Pharmacology [58], which collects a wide range of informa-
tion on important drug targets (e.g. G-protein-coupled
receptors [GPCRs], ion channels, and nuclear hormone
receptors), provides information on these proteins and
their ligands.

2.3. Annotations available in PubChem

In addition to bioactivity data, PubChem contains a great deal
of compound information that is useful for VS. For example,
thanks to data integration with DrugBank [48], PubChem pro-
vides users with comprehensive information on U.S. FDA-
approved and investigational drugs, including their drug indi-
cations, mechanisms of action, target macromolecules, inter-
actions with proteins and genes, ADMET (absorption,
distribution, excretion, metabolism, and toxicity) properties,
and many others. PubChem also contains toxicological infor-
mation on chemicals that are of interest in environmental and
human health, contributed by the Hazardous Substances Data
Bank (HSDB) [60].

Experimentally determined 3-D structures of small mole-
cules are also available in PubChem. The Molecular Modeling
Database [61] contributes to PubChem experimentally deter-
mined protein-bound ligand structures, derived from PDB [59].
In addition, PubChem provides links to crystal structures avail-
able at the Cambridge Structural Database [62].

PubChem also collects chemical information from impor-
tant regulatory agencies, such as the FDA and the U.S.
Environmental Protection Agency (EPA). For example, informa-
tion on drug products and ingredients from the FDA Orange
Book [63] is integrated in PubChem. PubChem also contains
FDA’s Unique Ingredient Identifiers [64] and Pharmacologic
Classes [65] for drug ingredients. In addition, drug labeling
information is available in PubChem, through NLM’s DailyMed
[66]. EPA Substance Registry Services provides PubChem with
information on chemical substances tracked or regulated by
EPA. Chemical data collected under the Toxic Substance

Control Act and the Clean Air Act are also available in
PubChem.

2.4. Availability of compounds for subsequent
experiments

Because the primary goal of VS is to select a list of compounds
to test in subsequent experiments, the availability of com-
pounds is an important consideration. That is, they should
be either synthesizable or purchasable. It is noteworthy that
PubChem does not include ‘virtual’ molecules. For each com-
pound in PubChem, there are one or more data contributors
who claim that they have the compound and/or information
about it. Importantly, some of these contributors are chemical
vendors from which one can purchase the compound.

Two important characteristics of PubChem records are worth
mentioning, with respect to the availability of compounds in
PubChem. First, PubChem records may become nonlive, mean-
ing that the records are not searchable, although they do exist in
the database. Data contributors to PubChem can revoke their
substance information in PubChem for various reasons, for
example, when they realize that they mistakenly submitted sub-
stances that they do not have, when they find incorrect informa-
tion about the substance, or when they choose not to share their
information with others. As an archive, PubChem does not
remove the revoked substance information, but makes it nonlive
(i.e. not searchable). When a compound record does not have
any live substance records associated, it becomes nonlive. The
compound can become live again if a live substance record
associated with it appears in PubChem.

The second issue concerning the compound availability is that
some information in PubChem is no longer maintained by data
contributors (e.g. because they do not have continued funding).
Especially, some chemical vendors are out of business, and com-
pounds that were purchasable from them in the past are not
available any more. To address this issue, PubChem introduced a
‘legacy’ designation for collections that are not regularly updated.
This legacy designation applies to projects/contributors that

Figure 3. Distribution of tested, active, and inactive compounds in PubChem. Tested compounds are those tested in at least one assay experiment archived in
PubChem. Active compounds are those which are declared as active in at least one assay in PubChem. Inactive compounds are those which are not declared as
active in any assay in PubChem.
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appear to no longer be active, as well as to their individual
substance records. Legacy records will not be shown in the
‘Chemical Vendors’ section of the Compound Summary page.
Instead, they will only be found under ‘Legacy Depositors’ in the
‘Substances by Category’ section of the Compound Summary
page. This designation will help PubChem users quickly identify
records that may have out-of-date information and/or hyperlinks.

2.5. Patentability of compounds for intellectual property
protection

In drug discovery programs, it is critical to make sure that
identified drug candidates are patentable. PubChem currently
offers links between about 6 million patent documents and
more than 16 million unique chemical structures, with over
336 million chemical substance-patent links covering U.S.,
European, and World Intellectual Property Organization
(WIPO) patent documents published since 1800. This informa-
tion is contributed by various organizations, including IBM
[67], SureChEMBL (formerly known as SureChem) [68,69],
NextMove Software [70], SCRIPDB [71], and BindingDB [57].

When a compound has patent information, its Compound
Summary page displays the patents associated with it in a tab-
ular format. In addition, the compound record is annotated with
WIPO International Patent Classification (IPC) [72] information for
the associated patents to. IPC is a hierarchical classification sys-
temused to classify patent documents according to the technical
fields they pertain to. The IPC information is displayed under the
Classification section of the Compound Summary page.

Users can search the Compound database for those asso-
ciated with a particular patent document or retrieve all com-
pounds that have patent information. Programmatic access to
patent information is also possible through PUG-REST [73],
which will be discussed later in this paper.

2.6. PubChem 2-D and 3-D neighbors

A disparity of available information exists among compounds
contained in PubChem. Some compounds such as approved
drug molecules have a great deal of information, including
bioactivity data, therapeutic use, mechanism of action, metabo-
lism, literature and patents associated, and so on. However, many
other structures (e.g. synthesized for HTS purposes) do not have
much information other than their chemical structures. When a
compound does not have desired information, it can be inferred
from information available to similar compounds. PubChem
assists users in finding similar chemical structures, by providing
a precomputed list of structurally similarmolecules, called ‘neigh-
bors,’ for each compound in PubChem [74,75].

PubChem neighbors come in two flavors: 2-D neighbors and
3-D neighbors (also known as ‘Similar Compounds’ and ‘Similar
Conformers’, respectively). Two compounds are defined as 2-D
neighbors of each other when they have a 2-D molecular simi-
larity score of 0.9 or greater, which is computed using the
Tanimoto coefficient [76] with the PubChem subgraph binary
fingerprints [77]. Computation of 3-D neighbors uses two Rapid
Overlay of Chemical Structures-based [78] 3-D similarity mea-
sures: the shape-Tanimoto (ST), which quantifies the 3-D steric
shape overlap between molecules, and the color-Tanimoto (CT),

which evaluates the similarity in 3-D orientation of feature atoms
between molecules. When one or more pairs of conformers of
two compounds have an ST score of ≥0.80 and a CT score of
≥0.50, the two compounds are defined as 3-D neighbors of each
other. For practical reasons, PubChem 3-D neighboring currently
uses up to nine conformers per compound, although compounds
in PubChemmay have up to 500 conformers [74]. In addition, 3-D
neighboring only considers compounds with computationally
generated 3-D conformer models, covering ~90% of all com-
pounds in PubChem [74]. Whereas much slower than 2-D neigh-
boring, 3-D neighboring often identifies structural similarity that
traditional 2-D graph-based structural similarity methods fail to
recognize [74]. Therefore, 3-D neighboring may offer comple-
mentary views on structural similarity between molecules with
similar biological activities.

One may consider that PubChem neighboring is ligand-
based VS against the entire PubChem Compound database
with each compound as a query. The 2-D and 3-D neighbors
of a compound can be accessed either through its Compound
Summary page or programmatically through PUG-REST [73].
They are also available in PubChemRDF [79], allowing users to
import them into local computing resources and to take advan-
tage of semantic web technologies (to be discussed later).

3. Automation of VS pipelines

3.1. Programmatic access to PubChem for automated VS
pipelines

PubChem provides multiple programmatic access routes to its
data [73], which allows one to build an automated VS pipeline
that exploits PubChem data. These access routes include Entrez
Utilities (also called E-Utilities or E-Utils) [80], Power User
Gateway (PUG) [81], PUG-SOAP [82], and PUG-REST [83]. The
characteristics of these methods are summarized in Table 1,
and more detailed information is given in our recent paper [73].

Among the four access routes in Table 1, PUG-REST is the
simplest to use and learn, because almost all information

Table 1. Programmatic access routes to PubChem data. See Ref. [73]. for more
detail.

Entrez Utilities (E-Utilities or E-Utils) [80]

● Used for programmatic access to information contained in the Entrez system.
● Suitable for accessing text-fielded or numeric-fielded data.
● Cannot handle data types specific to PubChem (e.g. chemical structures and

tabular bioactivity data).
Power User Gateway (PUG) [81]

● A common gateway interface (CGI) that serves as the central gateway to
several PubChem services.

● Suitable for low-level programmatic access to PubChem.
● Exchanges data through a complex XML schema.
● Requires some expertise to use.
PUG-SOAP [82]

● Uses the simple object access protocol (SOAP).
● Exchanges information using SOAP-formatted message envelops.
● Suitable for SOAP-aware GUI workflow applications and most programming/

scripting languages.
PUG-REST [83]

● Uses a Representational State Transfer (REST)-like interface.
● Does not require the overhead of XML and SOAP envelops.
● Information necessary to make a PUG-REST request can be encoded into a

single URL.
● The simplest to use and learn.
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necessary to make a PUG-REST request can be encoded into a
one-line Uniform Resource Locator (URL) . In addition, it pro-
vides convenient access to information on PubChem records
that are not accessible through the other programmatic inter-
faces. Importantly, PUG-REST supports various chemical struc-
ture searches commonly used in ligand-based VS, such as 2-D
and 3-D similarity searches, substructure search, superstruc-
ture search, and identity search.

It should be noted that PubChem has a standard time limit of
30 s per web service requests. In addition, users should limit
their web requests to no more than three per second, and
violation of usage policies may result in the user being tempora-
rily blocked from accessing PubChem (or NCBI) resources. See
the NCBI policies and disclaimers [84] for more information.

3.2. PubChemRDF for data exchange and integration

One may want to use PubChem data for building a new in-house
VS library or annotating an existing one. PubChemRDF [79], which
is Resource Description Framework (RDF)-formatted PubChem
data, can be used for this purpose. RDF [85] is a World Wide
Web Consortium (W3C) standard model for data interchange on
the web. RDF breaks knowledge into so-called triples, each of
which consists of the subject, object, and predicate. In essence,
RDF expresses knowledge into a directed, labeled graph.

PubChemRDF is downloadable through the File Transfer
Protocol (FTP). The RDF data on the PubChem FTP site is
arranged in such a way that one can download only the desired
type of information, instead of getting all RDF data. The down-
loaded data can be imported into a triplestore, such as Apache
Jena TDB and OpenLink Virtuoso, and searched using an SPARQL
query interface. Alternatively, one can load them and use the
graph traversal algorithms to query the RDF graphs. In addition,
PubChem provides a REST-ful interface for programmatic access
to PubChemRDF data (not to be confused with PUG-REST). The
PubChemRDF REST interface supports simple SPARQL-like query
capabilities for grouping and filtering relevant resources.

PubChemRDF harnesses ontological frameworks to help facil-
itate PubChem data sharing, analysis, and integration with
resources external to the National Center for Biotechnology
Information (NCBI) and across scientific domains. Importantly,
PubChemRDF enhances cross-integration by providing direct
links to available authoritative RDF resources within applicable
subdomains, including reference, synonym, and InChIKey [86] to
MeSH RDF [87]; protein to UniProt RDF [88]; protein and sub-
stance to PDB RDF [89]; Biosystem to Reactome RDF [88]; sub-
stance to ChEMBL RDF [88]; and compound toWikiData RDF [90].

4. Dealing with data imbalance issues in PubChem
data

4.1. Imbalance in HTS data

Bioactivity data from HTS typically contain only a handful to a
few hundred hits (active compounds) with many folds of
inactive compounds. This imbalanced nature of HTS data pre-
sents a great challenge for developing an accurate prediction
model from them [91–94]. This issue may be addressed by
generating a balanced data set through resampling of the

original HTS data set. Several studies [33,91–94] have applied
different resampling techniques for analysis of HTS data in
PubChem. They are broadly categorized into two classes:
undersampling of the majority class (inactive compounds)
and oversampling of the minority class (active compounds).

Li et al. [91] applied the granular support vector machines
(SVMs) with repetitive undersampling (GSVM-RUS) [95] to
develop an SVM from a highly imbalanced HTS data (with an
active-to-inactive compound ratio of 1/377 and 1/379 for the
training and blind test sets, respectively). The underlying idea
of this method is that, because only support vectors (SVs) are
important for SVM model classification, removal of non-SV
samples does not substantially affect the model performance.
In essence, this method enables one to extract important
compounds from the data set and to eliminate unimportant
ones. The best SVM model constructed in this study showed a
sensitivity of 86.60% and a specificity of 88.89% for the blind
test set. In some studies [33], inactive compounds were
selected into the modeling set only if it had a relatively high
similarity to active compounds, leading to a data set that is
more challenging to establish robust prediction models.

In a study of Chang et al. [92], the simple oversampling
technique was used to develop SVM models that classify
compounds according to predicted cytotoxicity against the
Jurkat cell line. It was demonstrated that oversampling of
the minority class (toxic compounds) leads to SVM models
with better predictive ability for both the training and external
test sets compared to results reported in previous studies.
More recently, Hao et al. [93] applied the synthetic minority
oversampling technique (SMOTE) [96] to tackle the HTS data
set imbalance issue. Unlike the traditional oversampling
method, SMOTE oversamples the minority class by creating
‘synthetic’ samples along the line segments connecting the
original minority-class samples with their k-nearest neighbors
(kNN). Predictive models developed from the oversampled
data set through the SMOTE algorithm were found to have
better accuracies than those from simple oversampling.

Based on analysis of several common strategies for imbal-
anced data modeling with PubChem’s HTS data, Nicklaus and
coworkers [94] proposed a hybrid method that combines
undersampling approach with cost-sensitive learning [97],
which takes the misclassification costs into account by impos-
ing penalties for misclassifications. The proposed method was
shown to provide more accurate prediction results than other
methods considered in their study [94].

4.2. Imbalance in literature-extracted data

As mentioned previously, PubChem contains not only HTS
data, but also high-quality bioactivity data extracted from
literature through data mining and/or manual curation [55].
Most of scientific articles typically contain data for active
compounds but do not report much information on inactive
compounds. As a result, use of literature-derived bioactivity
data for VS presents a data imbalance issue, which may be
considered to be opposite to the imbalance in HTS data.
Whereas HTS data are predominated by inactive compounds,
literature-derived data have little to no inactive compounds.
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In theory, resampling techniques may be used to balance
literature-derived data set. However, this is not a viable
option if the data set does not have any inactive compounds.
In such cases, ‘putative’ inactive compounds (also called
putative negatives) may be generated to balance the data
set, as proposed in a study by Han et al. [98] This approach
involves grouping all compounds in PubChem into clusters
according to their molecular descriptors, followed by ran-
domly selecting compounds from clusters that do not con-
tain any known active molecules against the target. Because
this method does not require known inactive compounds, it
enables more expanded coverage of the inactive chemical
space in case of little or no knowledge of inactive com-
pounds. Of course, undiscovered active compounds may be
included in the inactive space, leading to a reduced ability of
computational models to identify novel active compounds.
However, such an adverse effect is expected to be relatively
small, as demonstrated in the study by Han et al. [98] Many
studies [15,98–101] have shown that computational models
derived from putative negatives can perform reasonably well
in VS.

5. Computational toxicity prediction models from
PubChem bioactivity data

Because experimental determination of toxicity of a large
number of compounds is expensive and time-consuming,
use of computational models is considered as an alternative
or complement approach that can reduce the cost of experi-
mental toxicity assessment in the early stage of drug discov-
ery. This section summarizes computational toxicity prediction
models that use PubChem’s bioactivity data.

5.1. hERG-related cardiotoxicity prediction

The human Ether-a-go-go-Related Gene (hERG) protein [102] is
a tetrameric potassium ion channel that plays an important
role in cardiac action potential. Its blockage by drug molecules
is believed to be a major cause of drug-induced acquired long
QT syndrome and cardiac arrhythmia called Torsades de
Pointes, which are considered as electrocardiac symptoms of
cardiotoxicity. Because undesirable hERG-related cardiotoxicity
is a major problem in clinical studies of drug candidates and
often results in withdrawal of approved drugs from the mar-
ket, it is important to identify potential hERG blockers early in
the drug discovery process.

Many computational predictive models for hERG blockers
have been proposed, as summarized in a recent review by
Villoutreix and Taboureau [102]. Several studies [24–27] used
PubChem BioAssay data as a test or training set for developing
classification models that distinguish hERG blockers from hERG
nonblockers. An early example is a study by Li et al. [24], in
which an SVM-based hERG classification model was developed
using a training set of 495 compounds obtained from literature.
The model was tested on a set of 1948 compounds whose hERG
activities were available in the PubChem BioAssay database (i.e.
248 actives and 1700 inactives in AID 376), resulting in a 73%
accuracy (sensitivity = 57% and specificity = 75%).

In a study of Su et al. [25], the compound set from AID 376
was reduced into a set of 876 compounds that are smaller,
more condensed, and more applicable for lead optimization
against the hERG receptor, by removing compounds that
violate Lipinski’s rule of five [50] and discarding actives with
logP values of <4.1 and inactives with logP values of >2.8.
These hydrophobicity constraints employed were based on
the observation that the hydrophobicity of drugs tends to
increase the hERG blocking effect, while hydrophilic molecules
tend to decrease the hERG blocking effect. When this test set
was used to evaluate binary hERG classification models
derived from a continuous partial least-squares hERG binding
model, the best model showed an improved accuracy of 83%
(sensitivity = 97% and specificity = 82%).

Wang et al. [26] developed binary hERG classification mod-
els by employing Naïve Bayesian (NB) classification and recur-
sive partitioning (RP) techniques in conjunction with several
sets of molecular descriptors. It was found that the NB classi-
fier outperformed the RP-based model. When applied on a
test set derived from AID 376, the best Bayesian classifier at a
threshold of 40 μM resulted in an accuracy of 76% (with 37%
sensitivity and 82% specificity).

Whereas the PubChem hERG assay data from AID 376
were used as an external test set in all three studies [24–26]
mentioned earlier, these data have also been used as a
training set for model building. For example, Shen et al.
[27] derived a training set of 1668 compounds from AID 376
to build SVM-based binary hERG classification models, the
best of which had accuracies of 95% (with 90% sensitivity
and 96% specificity) for the training set and 87% (90%
sensitivity and 74% specificity) for the external set of 356
compounds.

5.2. Prediction of cytochrome P450s inhibition

The cytochrome P450s (CYPs) are a superfamily of heme-
containing enzymes that catalyze the metabolism of a variety
of endogenous and xenobiotic compounds. They are major
enzymes involved in drug metabolism, which affects the
bioavailability of drug molecules. In addition, the broad sub-
strate specificity of CYPs often leads to unexpected drug–
drug interactions, which is an important issue in drug dis-
covery and development as well as in their clinical
applications.

The PubChem Compound database provides manually
curated information on the metabolism for more than 5000
compounds, collected from data contributors such as HSDB
[60] and DrugBank [48]. Moreover, more than 9000 com-
pounds have links to the corresponding records in the
Human Metabolome Database (HMDB) [103], which offers
comprehensive information on metabolites.

The PubChem BioAssay database also contains a large
amount of experimental bioactivity data for compounds
tested against CYPs. While some of them were extracted
from scientific articles, others were determined through
HTS. Using these bioactivity data, several groups [28–32]
have developed computational prediction models for CYP
inhibition of small molecules. For example, Cheng et al. [28]
constructed inhibitor prediction models for five major CYP
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isoforms, namely 1A2, 2C9, 2C19, 2D6, and 3A4, which
account for more than 90% of drug metabolism. Their
model used an algorithm that combines a back-propagation
artificial neural network with other machine learning meth-
ods including kNN, SVM, NB, and C4.5 decision tree. Using a
rule-based C5.0 decision tree algorithm with several molecu-
lar descriptors, Su et al. [29] developed an improved predic-
tion model, which can classify CYP inhibitors and
noninhibitors with an 81.4–93.0% accuracy.

5.3. Toxicity prediction models from cellular toxicity

When toxicity of a chemical arises from its interaction with a
particular target protein, gene, or pathway, one can build a a
computational model that predicts whether a compound is
toxic by virtue of its interaction with the target. However,
chemical toxicity often comes from much more complex pro-
cesses that involve many different proteins and genes in
multiple pathways. In this case, a computational toxicity pre-
diction model can be developed from cellular toxicity data
generated in cell proliferation assays that do not address any
specific target or underlying mechanism.

PubChem’s toxicity data have been used to develop
computational toxicity prediction models. In a study of
Zhu et al. [33], HTS data for cell viability of 1408 com-
pounds tested against six cell lines were used to construct
a kNN quantitative structure–activity relationship (QSAR)
model that predicts rodent carcinogenicity of chemicals.
This study demonstrated that, when cell viability data
were used together with chemical descriptors, the resulting
kNN QSAR model had a better accuracy than those devel-
oped using chemical descriptors only.

Guha and Schürer [34] built computational models to pre-
dict cell toxicity based on cell proliferation HTS data contained
in PubChem. To reduce the impact of the imbalanced nature
of the data set employed, their prediction models were devel-
oped using an ensemble of 30 random forest models, each of
which was constructed from a training set with equal distribu-
tions of toxic and nontoxic compounds sampled from the
original set. These models resulted in correct classification
rates between 70% and 85% against the test sets, depending
on the nature of the data sets and the descriptors employed.
However, when applied to predict in vivo animal toxicity, they
showed a significantly reduced accuracy, although there were
cases where cell toxicity strongly relates to in vivo animal
toxicity.

Zhang et al. [35] proposed a method to predict acute
animal toxicity of compounds (represented by the LD50 values
of rats), using bioactivity profiles of compounds extracted
from bioassay data in the PubChem BioAssay database.
Sedykh et al. [104] demonstrated that the use of dose–
response data from qHTS assays as biological descriptors can
improve the accuracy of QSAR models for in vivo toxicity
prediction when combined with chemical descriptors. More
recently, a prediction model for oxidative stress-induced hepa-
totoxicity of chemicals [105] was generated from HTS data
archived in PubChem. The use of HTS data for chemical toxi-
city prediction is well reviewed in a recent article by Zhu
et al. [106]

6. Application of PubChem data for
polypharmacology

The term ‘polypharmacology’ [107] is used to describe a
new drug development paradigm, which aims to develop
a drug or a combination of drugs that simultaneously act on
multiple drug targets. This multitarget approach is consid-
ered as an alternative to the traditional single-target para-
digm, particularly in the treatment of complex diseases such
as cancer and central nervous system disorders.
Polypharmacology is also very closely related to drug repur-
posing, which identifies new indication for existing drugs, as
well as predicting off-target adverse drug reactions (side
effects), which are caused by interaction of drug molecules
with unintended proteins.

PubChem data have been used in several studies that
developed computational methods for identifying multitarget
ligands [101,107–110]. Some of these studies [108] employed
a combinatorial approach in which predictive models were
separately constructed for each target and subsequently
used for parallel screening against each target to find com-
pounds that simultaneously bind to multiple targets. This
approach may also be used for identifying selective ligands
for structurally related protein targets.

Alternatively, several studies used network-based approaches
for finding multitarget compounds. Chen et al. [107] performed
cross-assay analyses to investigate the polypharmacological nat-
ure of bioactivity data contained in PubChem. With 602 bioas-
says that had information on target proteins at that time, they
constructed a network of assays, by representing each assay with
a node and connecting nodes with an edge if the assays corre-
sponding to the nodes have one or more common active com-
pounds. Through bipartite mapping, this assay network was
merged with other networks, such as drug–target network, pro-
tein–protein interaction network, and pathway. The resulting
bipartite networks helped identifying compounds that are active
against multiple targets, as well as interesting protein pairs that
can be targeted simultaneously under the polypharmacological
drug development paradigm.

Because the bipartite mapping approach used in the study
by Chen et al. [107] requires knowledge of the assay targets, it
was not applicable to assays that have no target information
(such as phenotypic assays). An alternative network-based
approach has also been developed which allows for analysis
of both target-based and phenotypic assays. In a study by
Swamidass et al. [109], a network of 1581 assays with at
least 5000 tested compounds was constructed based on simi-
larity between two assays in terms of correlation between
bioactivity scores of the compounds tested in both assays.
The bioactivity score correlation was quantified with the pro-
miscuity-adjusted correlation, which downweighs promiscu-
ous compounds that were tested active in many assays. The
underlying assumption in this study is that if many molecules
have similar bioactivities in two assays, there is likely a strong
relationship between the assays (e.g. having similar protein
targets or closely related biological pathways). This approach
allows one to deduce the target and underlying biology of a
phenotypic assay from information available for target-based
assays connected to that assay.
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7. Benchmark data sets for VS derived from
PubChem data

Because many VS methods have been developed, it is not easy
to decide which method will be best for a particular drug
discovery project. Therefore, the objective evaluation of
these VS methods is an important issue. This evaluation
involves a retrospective validation of VS methods using
benchmark data sets that consist of known active compounds
against a target protein as well as inactive compounds or
untested decoys. Examples of such data sets are the
Directory of Useful Decoys (DUD) set [111], and its enhanced
version (DUD-E) [112], Virtual Decoy Sets [113], the
Demanding Evaluation Kits for Objective in Silico Screening
[114,115], the GPCR ligand library [116] and GPCR decoy data-
base [116], the Unbiased Ligand Set [117], and Unbiased
Decoy Set [117].

In several studies [118–121], HTS data in the PubChem
BioAssay database were used to construct benchmark data
sets for VS validation. For example, Rohrer and Baumann
[119] developed the Maximum Unbiased Validation (MUV)
benchmarking data sets from the HTS data for 17 protein
targets. The MUV sets were designed to minimize the ‘bench-
mark data set bias,’ [119] which is caused by two critical issues
in many benchmark data sets: artificial enrichment [122] and
analog bias [123]. As a result, the MUV sets enable a more
accurate and impartial evaluation of VS methods.

Although some of the 17 targets covered in the MUV sets
have experimentally determined 3-D structures in PDB [59],
the design focus of the MUV sets was primarily on validation
of ligand-based VS methods, not structure-based ones. Lindh
et al. [121] developed validation data sets suitable for valida-
tion of both structure-based and ligand-based VS methods,
based on PubChem’s HTS data for seven protein targets
whose crystal structure has been reported in PDB.
Importantly, these data sets were designed to have a higher
ratio of the number of inactive to active compounds than
other benchmark data sets in order to reflect typical drug
discovery scenarios in which hit compounds from VS are sub-
sequently tested in an HTS experiment. Therefore, these data
sets would give more realistic measures of the performance of
different VS methods.

8. Conclusion

PubChem provides comprehensive chemical information col-
lected from more than 400 data sources. It contains experi-
mental bioactivity data as well as other valuable information
relevant to drug discovery, including pharmacology, toxicol-
ogy, mechanisms of action, ADMET properties, 3-D structures,
and so on. Especially, information on chemical vendors and
patents helps prioritize hit compounds from VS for further
screening. In addition, the precomputed PubChem 2-D and
3-D neighboring relationships enable quick access to structu-
rally similar compounds for a given compound.

Because information contained in PubChem can be pro-
grammatically accessed (through several methods including
E-Utilities, PUG, PUG-SOAP, and PUG-REST), it is possible to
build an automated VS pipeline that exploits information

contained in PubChem. In addition, through PubChemRDF,
users can integrate PubChem’s data into their own in-house
data on a local computing machine.

PubChem data have been used in many drug discovery
studies. For example, PubChem’s bioactivity data were used
to build computational models for bioactivity or toxicity pre-
diction or to discover polypharmacologic multitarget ligands.
In some studies, they were used to develop benchmark data
set, which allows for objective evaluation of different VS
methods.

When using PubChem’s bioactivity data to construct a pre-
diction model, one should keep in mind that they are highly
imbalanced. HTS data are predominated by inactive com-
pounds with only a few active compounds, and literature-
derived data often contain only active compounds without
any inactive compounds. This data imbalance issue should
be addressed to develop an accurate prediction model.

9. Expert opinion

PubChem is the largest source of publicly available chemical
information, with more than 219 million substances, 89 million
compounds, and 230 million bioactivity outcomes from more
than 1 million assays covering around 10,000 unique protein
target sequences. Therefore, the biomedical research community
has great interest in exploiting PubChem’s data for drug discovery.

PubChem contains a large amount of chemical information
that is useful for VS. In addition to HTS data generated by
NIH’s Molecular Libraries Program and other HTS projects,
PubChem contains a substantial amount of literature-
extracted bioactivity information contributed by ChEMBL
[49], Guide to Pharmacology [58], BindingDB [57], PDBbind
[56], and so on. Moreover, through data integration with
other databases such as DrugBank [48], HSDB [60], and
HMDB [103], PubChem provides a broad range of annotated
information on small molecules, including pharmacology, tox-
icology, drug target, metabolism, safety and handling, and
many others. PubChem also hosts data from important regu-
latory agencies, such as the FDA and EPA.

PubChem provides information on chemical vendors and
patents for compounds. Currently, it offers links between
about 6 million patent documents and more than 16 million
unique chemical structures, with over 329 million chemical
substance-patent links covering U.S., European, and WIPO
patent documents published since 1800. Chemical vendor
and patent information for compounds in PubChem would
be useful for prioritizing hit compounds for further screening.

A large variation in the amount of available information exists
among compounds contained in PubChem. For example, as
shown in Figure 3, about 98% of PubChem compounds have
never been tested in any assays archived in the BioAssay data-
base. Inevitably, biological activities of these molecules need to
be inferred from their structurally similar molecules that have
biological activity data. PubChem helps users quickly identify
similar chemical structures, by providing a precomputed list of
2-D and 3-D neighbors [74,75] for each compound.

To assist users in automating VS pipelines, PubChem pro-
vides multiple programmatic access routes, including
E-Utilities, PUG, PUG-SOAP, and PUG-REST. In addition,
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PubChemRDF [79] allows users to download PubChem data
on a local computing facility and integrate them with their in-
house data, facilitating data sharing and integration with other
information resources. Importantly, PubChemRDF enhances
cross-integration by providing direct links to available author-
itative RDF resources within applicable subdomains.

When bioactivity data in PubChem are used to develop a
prediction model, the data imbalance issue needs to be taken
care of. Typically, HTS data in PubChem are strongly imbal-
anced, containing a small number of active compounds with a
very large number of inactive compounds. When such imbal-
anced data sets are used to build computational models that
predict bioactivity of molecules, they need to be balanced by
undersampling inactive compounds or oversampling active
compounds. Several studies proposed various sampling tech-
niques to address the issue of data set imbalance. On the
other hand, because scientific articles primarily report data
for active compounds, literature-extracted bioactivity data in
PubChem often lack information on inactive compounds,
creating another type of data set imbalance. To use these
literature-extracted data for model building, putative inactive
compounds may be generated to balance the data set.

PubChem contains a large amount of toxicity data generated
fromHTS assays, as well as those extracted from literature through
manual curation or data mining. These toxicity data have been
used in many studies to construct computational models that
predict toxicity of molecules. Some of these studies aimed to
predict target-specific toxicities, such as cardiotoxicity due to
hERG inhibition, and drug-induced liver damage due to CYP
inhibition. Other studies developed prediction models for cellular
toxicity, carcinogenicity, in vivo animal toxicity, which arise from
much more complex mechanism involving multiple genes, tar-
gets, and pathways. These prediction models can be used for
structure alerts for potentially toxic molecules during VS.

A large amount of target information for compounds in
PubChem can be used to find multitarget ligands for poly-
pharmacologic drug development. In addition, it can be used
to find new targets for a compound, which allows one to
predict off-target side effects of drug molecules that cause
adverse drug reaction as well as to repurpose existing drug
molecules for a new indication. These areas can be harnessed
by using PubChemRDF, which presents a promising opportu-
nity to exploit public chemical information not only in
PubChem, but also in other chemical and biological databases.

Acknowledgments

The author thanks the entire PubChem team and the NCBI staff as well as
the hundreds of data contributors for making their data openly accessible
within PubChem. He also thanks Evan Bolton at PubChem and Bradley
Otterson at the NIH Library Editing Service for critical reading of this
manuscript.

Funding

This work was supported by the Intramural Research Program of the
National Library of Medicine, NIH.

Declaration of interest

S Kim is an employee of the National Library of Medicine. He has no other
relevant affiliations or financial involvement with any organization or
entity with a financial interest in or financial conflict with the subject
matter or materials discussed in the manuscript apart from those
disclosed.

References

Papers of special note have been highlighted as either of interest (•) or of
considerable interest (••) to readers.

1. Inglese J, Johnson RL, Simeonov A, et al. High-throughput screen-
ing assays for the identification of chemical probes. Nat Chem Biol.
2007;3(8):466–479. doi:10.1038/nchembio.2007.17.

2. Diller DJ. The synergy between combinatorial chemistry and high-
throughput screening. Curr Opin Drug Discov Dev. 2008;11(3):346–
355.

3. Moos WH, Hurt CR, Morales GA. Combinatorial chemistry: oh what
a decade or two can do. Mol Divers. 2009;13(2):241–245.
doi:10.1007/s11030-009-9127-y.

4. Scior T, Bender A, Tresadern G, et al., Recognizing pitfalls in virtual
screening: a critical review. J Chem Inf Model. 52(4): 867–881. 2012.
doi:10.1021/ci200528d.

• A comprehensive review on important issues for successful
virtual screening.

5. McInnes C. Virtual screening strategies in drug discovery. Curr Opin
Chem Biol. 2007;11(5):494–502. doi:10.1016/j.cbpa.2007.08.033.

6. Kim S, Thiessen PA, Bolton EE, et al., PubChem substance and
compound databases. Nucleic Acids Res. 44(D1): D1202–D1213.
2016. doi:10.1093/nar/gkv951.

•• The most recent overview of the PubChem Substand and
Compound databases.

7. Wang YL, Suzek T, Zhang J, et al., PubChem BioAssay: 2014 update.
Nucleic Acids Res. 42(D1): D1075–D1082. 2014. doi:10.1093/nar/
gkt978.

•• The most recent overview of the PubChem BioAssay database.
8. PubChem. Bethesda, MD: National Center for Biotechnology

Information; 2004 [cited 2016 July 19. Available from: https://pub
chem.ncbi.nlm.nih.gov.

9. Mahasenan KV, Li CL. Novel inhibitor discovery through virtual
screening against multiple protein conformations generated via
ligand-directed modeling: a maternal embryonic leucine zipper
kinase example. J Chem Inf Model. 2012;52(5):1345–1355.
doi:10.1021/ci300040c.

10. Cheng CS, Jia KF, Chen T, et al. Experimentally validated novel
inhibitors of helicobacter pylori phosphopantetheine adenylyl-
transferase discovered by virtual high-throughput screening. PLoS
One. 2013;8(9):11.

11. Dunna NR, Bandaru S, Akare UR, et al. Multiclass comparative
virtual screening to identify novel hsp90 inhibitors: a therapeutic
breast cancer drug target. Curr Top Med Chem. 2015;15(1):57–64.

12. Fang JS, Huang D, Zhao WX, et al. A new protocol for predicting
novel GSK-3 beta ATP competitive inhibitors. J Chem Inf Model.
2011;51(6):1431–1438. doi:10.1021/ci2001154.

13. Hsieh JH, Wang XS, Teotico D, et al. Differentiation of AmpC beta-
lactamase binders vs. decoys using classification kNN QSAR model-
ing and application of the QSAR classifier to virtual screening. J
Comput Aided Mol Des. 2008;22(9):593–609. doi:10.1007/s10822-
008-9199-2.

14. Sapre NS, Gupta S, Pancholi N, et al. A group center overlap based
approach for “3D QSAR” studies on TIBO derivatives. J Comput
Chem. 2009;30(6):922–933. doi:10.1002/jcc.21114.

15. Han BC, Ma XH, Zhao RY, et al. Development and experimental test
of support vector machines virtual screening method for searching
Src inhibitors from large compound libraries. Chem Cent J.
2012;6:14. doi:10.1186/1752-153X-6-110.

16. Kothapalli R, Khan AM, Basappa, et al. Cheminformatics-based drug
design approach for identification of inhibitors targeting the

852 S. KIM

http://dx.doi.org/10.1038/nchembio.2007.17
http://dx.doi.org/10.1007/s11030-009-9127-y
http://dx.doi.org/10.1021/ci200528d
http://dx.doi.org/10.1016/j.cbpa.2007.08.033
http://dx.doi.org/10.1093/nar/gkv951
http://dx.doi.org/10.1093/nar/gkt978
http://dx.doi.org/10.1093/nar/gkt978
https://pubchem.ncbi.nlm.nih.gov
https://pubchem.ncbi.nlm.nih.gov
http://dx.doi.org/10.1021/ci300040c
http://dx.doi.org/10.1021/ci2001154
http://dx.doi.org/10.1007/s10822-008-9199-2
http://dx.doi.org/10.1007/s10822-008-9199-2
http://dx.doi.org/10.1002/jcc.21114
http://dx.doi.org/10.1186/1752-153X-6-110


characteristic residues of MMP-13 hemopexin domain. PLoS One.
2010;5(8):7. doi:10.1371/journal.pone.0012494.

17. Nolan TL, Geffert LM, Kolber BJ, et al. Discovery of novel-scaffold
monoamine transporter ligands via in silico screening with the S1
pocket of the serotonin transporter. ACS Chem Neurosci. 2014;5
(9):784–792. doi:10.1021/cn500133b.

18. Banavath HN, Sharma OP, Kumar MS, et al. Identification of novel
tyrosine kinase inhibitors for drug resistant T315I mutant BCR-ABL:
a virtual screening and molecular dynamics simulations study. Sci
Rep. 2014;4:11. doi:10.1038/srep06948.

19. Bak A, Magdziarz T, Polanski J. Pharmacophore-based database
mining for probing fragmental drug-likeness of diketo acid analo-
gues. SAR QSAR Environ Res. 2012;23(1–2):185–204. doi:10.1080/
1062936X.2011.645875.

20. Jalali-Heravi M, Mani-Varnosfaderani A, Valadkhani A. Integrated
one-against-one classifiers as tools for virtual screening of com-
pound databases: a case study with CNS inhibitors. Mol Inform.
2013;32(8):742–753. doi:10.1002/minf.201200126.

21. Khanna V, Ranganathan S. In silico approach to screen compounds
active against parasitic nematodes of major socio-economic impor-
tance. BMC Bioinformatics. 2011;12:12. doi:10.1186/1471-2105-12-
S13-S25.

22. Pacureanu L, Crisan L, Bora A, et al. In silico classification and virtual
screening of maleimide derivatives using projection to latent struc-
tures discriminant analysis (PLS-DA) and hybrid docking. Monatsh
Chem. 2012;143(11):1559–1573. doi:10.1007/s00706-012-0816-3.

23. Wicht KJ, Combrinck JM, Smith PJ, et al. Bayesian models trained
with HTS data for predicting beta-haematin inhibition and in vitro
antimalarial activity. Bioorg Med Chem. 2015;23(16):5210–5217.
doi:10.1016/j.bmc.2014.12.020.

24. Li QY, Jorgensen FS, Oprea T, et al. hERG classification model based
on a combination of support vector machine method and GRIND
descriptors. Mol Pharm. 2008;5(1):117–127. doi:10.1021/
mp700124e.

25. Su BH, Shen MY, Esposito EX, et al. In silico binary classification
QSAR models based on 4D-fingerprints and MOE descriptors for
prediction of hERG blockage. J Chem Inf Model. 2010;50(7):1304–
1318. doi:10.1021/ci100081j.

26. Wang SC, Li YY, Wang JM, et al. ADMET evaluation in drug dis-
covery. 12. Development of binary classification models for predic-
tion of hERG potassium channel blockage. Mol Pharm. 2012;9
(4):996–1010. doi:10.1021/mp300023x.

27. Shen MY, Su BH, Esposito EX, et al. A comprehensive support
vector machine binary hERG classification model based on exten-
sive but biased end point hERG data sets. Chem Res Toxicol.
2011;24(6):934–949. doi:10.1021/tx200099j.

28. Cheng FX, Yu Y, Shen J, et al. Classification of cytochrome P450
inhibitors and noninhibitors using combined classifiers. J Chem Inf
Model. 2011;51(5):996–1011. doi:10.1021/ci200028n.

29. Su BH, Tu YS, Lin C, et al. Rule-based prediction models of cyto-
chrome P450 inhibition. J Chem Inf Model. 2015;55(7):1426–1434.
doi:10.1021/acs.jcim.5b00130.

30. Didziapetris R, Dapkunas J, Sazonovas A, et al. Trainable structure-
activity relationship model for virtual screening of CYP3A4 inhibi-
tion. J Comput Aided Mol Des. 2010;24(11):891–906. doi:10.1007/
s10822-010-9381-1.

31. Novotarskyi S, Sushko I, Korner R, et al. A comparison of different
QSAR approaches to modeling CYP450 1A2 inhibition. J Chem Inf
Model. 2011;51(6):1271–1280. doi:10.1021/ci200091h.

32. Buchwald P. Activity-limiting role of molecular size: size-depen-
dency of maximum activity for P450 inhibition as revealed by
qHTS data. Drug Metab Dispos. 2014;42(11):1785–1790.
doi:10.1124/dmd.114.059717.

33. Zhu H, Rusyn I, Richard A, et al. Use of cell viability assay data
improves the prediction accuracy of conventional quantitative
structure-activity relationship models of animal carcinogenicity.
Environ Health Perspect. 2008;116(4):506–513. doi:10.1289/
ehp.10573.

34. Guha R, Schurer SC. Utilizing high throughput screening data for
predictive toxicology models: protocols and application to MLSCN

assays. J Comput Aided Mol Des. 2008;22(6–7):367–384.
doi:10.1007/s10822-008-9192-9.

35. Zhang J, Hsieh JH, Zhu H. Profiling animal toxicants by automati-
cally mining public bioassay data: a big data approach for compu-
tational toxicology. PLoS One. 2014;9(6):11.

36. Pouliot Y, Chiang AP, Butte AJ. Predicting adverse drug reactions
using publicly available PubChem BioAssay data. Clin Pharmacol
Ther. 2011;90(1):90–99. doi:10.1038/clpt.2011.81.

• PubChem’s bioactivity data were used to build a predictive
model for adverse drug reactions.

37. Cami A, Arnold A, Manzi S, et al., Predicting adverse drug events
using pharmacological network models. Sci Transl Med. 3(114): 10.
2011. doi:10.1126/scitranslmed.3002774.

• A predictive model for adverse drug events was developed
using known drug–ADE relationships.

38. Wassermann AM, Lounkine E, Hoepfner D, et al., Dark chemical
matter as a promising starting point for drug lead discovery. Nat
Chem Biol. 11(12): 958–966. 2015. doi:10.1038/nchembio.1936.

• A research article in which a new lead molecule was identified
from dark chemical matter (DCM).

39. PubChem Data Sources. Bethesda, MD: National Center for
Biotechnology Information; 2016 cited 2016 July 19. Available
from: https://pubchem.ncbi.nlm.nih.gov/sources/.

40. PubChem Substance. Bethesda, MD: National Center for
Biotechnology Information; 2004 [cited 2016 July 19]. Available
from: https://www.ncbi.nlm.nih.gov/pcsubstance/.

41. PubChem Compound. Bethesda, MD: National Center for
Biotechnology Information; 2004 [cited 2016 July 19]. Available
from: https://www.ncbi.nlm.nih.gov/pccompound/.

42. PubChem BioAssay. Bethesda, MD: National Center for
Biotechnology Information; 2004 [cited 2016 July 19]. Available
from: https://www.ncbi.nlm.nih.gov/pcassay/.

43. Fink T, Reymond JL. Virtual exploration of the chemical universe up
to 11 atoms of C, N, O, F: assembly of 26.4 million structures (110.9
million stereoisomers) and analysis for new ring systems, stereo-
chemistry, physicochemical properties, compound classes, and
drug discovery. J Chem Inf Model. 2007;47(2):342–353.
doi:10.1021/ci600423u.

44. Blum LC, van Deursen R, Reymond JL. Visualisation and subsets of
the chemical universe database GDB-13 for virtual screening. J
Comput Aided Mol Des. 2011;25(7):637–647. doi:10.1007/s10822-
011-9436-y.

45. Ruddigkeit L, van Deursen R, Blum LC, et al. Enumeration of 166
billion organic small molecules in the chemical universe database
GDB-17. J Chem Inf Model. 2012;52(11):2864–2875. doi:10.1021/
ci300415d.

46. Reymond JL, Awale M. Exploring chemical space for drug discovery
using the chemical universe database. ACS Chem Neurosci. 2012;3
(9):649–657. doi:10.1021/cn3000422.

47. Oprea TI, Allu TK, Fara DC, et al. Lead-like, drug-like or “Pub-like”:
how different are they? J Comput Aided Mol Des. 2007;21(1–
3):113–119. doi:10.1007/s10822-007-9105-3.

48. Law V, Knox C, Djoumbou Y, et al. DrugBank 4.0: shedding new
light on drug metabolism. Nucleic Acids Res. 2014;42(D1):D1091–
D1097. doi:10.1093/nar/gkt1068.

49. Bento AP, Gaulton A, Hersey A, et al. The ChEMBL bioactivity
database: an update. Nucleic Acids Res. 2014;42(D1):D1083–
D1090. doi:10.1093/nar/gkt1031.

50. Lipinski CA, Lombardo F, Dominy BW, et al. Experimental and
computational approaches to estimate solubility and permeability
in drug discovery and development settings. Adv Drug Deliv Rev.
2012;64:4–17. doi:10.1016/j.addr.2012.09.019.

• A review article that describes Lipinski’s rule of 5.
51. Congreve M, Carr R, Murray C, et al. A rule of three for fragment-

based lead discovery? Drug Discovery Today. 2003;8(19):876–877.
• A paper that describes congreve’s rule of 3.

52. Inglese J, Auld DS, Jadhav A, et al. Quantitative high-throughput
screening: a titration-based approach that efficiently identifies bio-
logical activities in large chemical libraries. Proc Natl Acad Sci USA.
2006;103(31):11473–11478. doi:10.1073/pnas.0604348103.

EXPERT OPINION ON DRUG DISCOVERY 853

http://dx.doi.org/10.1371/journal.pone.0012494
http://dx.doi.org/10.1021/cn500133b
http://dx.doi.org/10.1038/srep06948
http://dx.doi.org/10.1080/1062936X.2011.645875
http://dx.doi.org/10.1080/1062936X.2011.645875
http://dx.doi.org/10.1002/minf.201200126
http://dx.doi.org/10.1186/1471-2105-12-S13-S25
http://dx.doi.org/10.1186/1471-2105-12-S13-S25
http://dx.doi.org/10.1007/s00706-012-0816-3
http://dx.doi.org/10.1016/j.bmc.2014.12.020
http://dx.doi.org/10.1021/mp700124e
http://dx.doi.org/10.1021/mp700124e
http://dx.doi.org/10.1021/ci100081j
http://dx.doi.org/10.1021/mp300023x
http://dx.doi.org/10.1021/tx200099j
http://dx.doi.org/10.1021/ci200028n
http://dx.doi.org/10.1021/acs.jcim.5b00130
http://dx.doi.org/10.1007/s10822-010-9381-1
http://dx.doi.org/10.1007/s10822-010-9381-1
http://dx.doi.org/10.1021/ci200091h
http://dx.doi.org/10.1124/dmd.114.059717
http://dx.doi.org/10.1289/ehp.10573
http://dx.doi.org/10.1289/ehp.10573
http://dx.doi.org/10.1007/s10822-008-9192-9
http://dx.doi.org/10.1038/clpt.2011.81
http://dx.doi.org/10.1126/scitranslmed.3002774
http://dx.doi.org/10.1038/nchembio.1936
https://pubchem.ncbi.nlm.nih.gov/sources/
https://www.ncbi.nlm.nih.gov/pcsubstance/
https://www.ncbi.nlm.nih.gov/pccompound/
https://www.ncbi.nlm.nih.gov/pcassay/
http://dx.doi.org/10.1021/ci600423u
http://dx.doi.org/10.1007/s10822-011-9436-y
http://dx.doi.org/10.1007/s10822-011-9436-y
http://dx.doi.org/10.1021/ci300415d
http://dx.doi.org/10.1021/ci300415d
http://dx.doi.org/10.1021/cn3000422
http://dx.doi.org/10.1007/s10822-007-9105-3
http://dx.doi.org/10.1093/nar/gkt1068
http://dx.doi.org/10.1093/nar/gkt1031
http://dx.doi.org/10.1016/j.addr.2012.09.019
http://dx.doi.org/10.1073/pnas.0604348103


53. Rao HB, Li ZR, Li XY, et al. Identification of small molecule aggre-
gators from large compound libraries by support vector machines.
J Comput Chem. 2010;31(4):752–763. doi:10.1002/jcc.21347.

54. Su BH, Tu YS, Lin OA, et al. Rule-based classification models of
molecular autofluorescence. J Chem Inf Model. 2015;55(2):434–445.
doi:10.1021/ci5007432.

55. Kim S, Thiessen PA, Cheng T, et al. Literature information in
PubChem: associations between PubChem records and scientific
articles. J Cheminform. 2016;8:32. doi:10.1186/s13321-016-0142-6.

56. Liu ZH, Li Y, Han L, et al. PDB-wide collection of binding data:
current status of the PDBbind database. Bioinformatics. 2015;31
(3):405–412. doi:10.1093/bioinformatics/btu626.

57. Gilson MK, Liu T, Baitaluk M, et al. BindingDB in 2015: a public
database for medicinal chemistry, computational chemistry and
systems pharmacology. Nucleic Acids Res. 2016;44(D1):D1045–
D1053. doi:10.1093/nar/gkv1072.

58. Southan C, Sharman JL, Benson HE, et al. The IUPHAR/BPS Guide to
PHARMACOLOGY in 2016: towards curated quantitative interac-
tions between 1300 protein targets and 6000 ligands. Nucleic
Acids Res. 2016;44(D1):D1054–D1068. doi:10.1093/nar/gkv1037.

59. Berman HM, Westbrook J, Feng Z, et al. The protein data bank.
Nucleic Acids Res. 2000;28(1):235–242.

60. Fonger GC, Hakkinen P, Jordan S, et al. The National Library of
Medicine’s (NLM) Hazardous Substances Data Bank (HSDB): back-
ground, recent enhancements and future plans. Toxicology.
2014;325:209–216. doi:10.1016/j.tox.2014.09.003.

61. Madej T, Lanczycki CJ, Zhang DC, et al. MMDB and VAST+: tracking
structural similarities between macromolecular complexes. Nucleic
Acids Res. 2014;42(D1):D297–D303. doi:10.1093/nar/gkt1208.

62. Groom CR, Bruno IJ, Lightfoot MP, et al. The Cambridge Structural
Database. Acta Crystallogr B Struct Sci Cryst Eng Mater.
2016;72:171–179. doi:10.1107/S2052520616003954.

63 Orange book: approved drug products with therapeutic equiva-
lence evaluations. Silver Spring, MD: U.S. Food and Drug
Administration; 2013 [cited 2016 July 14]. Available from: http://
www.accessdata.fda.gov/scripts/cder/ob/.

64. Substance Registration System - Unique Ingredient Identifier (UNII).
Silver Spring, MD: U.S. Food and Drug Administration; 2016 [cited
2016 July 14]. Available from: http://www.fda.gov/ForIndustry/
D a t a S t a n d a r d s / S u b s t a n c e R e g i s t r a t i o n S y s t e m -
UniqueIngredientIdentifierUNII/default.htm.

65. Pharmacologic class. Silver Spring, MD: U.S. Food and Drug
Administration; 2015 [cited 2016 July 14. Available at: http://
w w w . f d a . g o v / F o r I n d u s t r y / D a t a S t a n d a r d s /
StructuredProductLabeling/ucm162549.htm.

66. DailyMed. Bethesda, MD: U.S. National Library of Medicine; 2016
[cited 2016 July 14]. Available from: http://dailymed.nlm.nih.gov.

67. IBM Research-Almaden. San Jose, CA: IBM; 2016 [cited 2016 July
14]. Available from: http://www.almaden.ibm.com.

68. Papadatos G, Davies M, Dedman N, et al. SureChEMBL: a large-
scale, chemically annotated patent document database. Nucleic
Acids Res. 2016;44(D1):D1220–D28. doi:10.1093/nar/gkv1253.

69. SureChEMBL. Cambridgeshire, UK: EMBL European Bioinformatics
Institute; 2014 [Last accessed 2016July 19]. Available from: https://
www.surechembl.org.

70. NextMove Software. Cambridge, UK: NextMove Software; 2016
[cited 2016 July 14]. Available from: https://www.nextmovesoft
ware.com/.

71. Heifets A, Jurisica I. SCRIPDB: a portal for easy access to syntheses,
chemicals and reactions in patents. Nucleic Acids Res. 2012;40(D1):
D428–D33. doi:10.1093/nar/gkr919.

72. International Patent Classification (IPC). Geneva, Switzerland: World
Intellectual Property Organization; 2016 [cited 2016 July 14].
Available from: http://www.wipo.int/classifications/ipc/en/.

73. Kim S, Thiessen PA, Bolton EE, et al., PUG-SOAP and PUG-REST: web
services for programmatic access to chemical information in
PubChem. Nucleic Acids Res. 43(W1): W605–W611. 2015.
doi:10.1093/nar/gkv396.

•• An overview of programmatic access to PubChem data.

74. Bolton EE, Chen J, Kim S, et al. PubChem3D: a new resource for
scientists. J Cheminform. 2011;3:32. doi:10.1186/1758-2946-3-6.

•• A comprehensive overview of the PubChem3D project.
75. Bolton EE, Kim S, Bryant SH. PubChem3D: similar conformers. J

Cheminform. 2011;3:13. doi:10.1186/1758-2946-3-6.
•• A comprehensive overview of PubChem 2-D and 3-D neighbor-

ing computations.
76. Holliday JD, Hu CY, Willett P. Grouping of coefficients for the

calculation of inter-molecular similarity and dissimilarity using 2D
fragment bit-strings. Comb Chem High Throughput Screen. 2002;5
(2):155–166.

77. PubChem substructure fingerprint description. Bethesda, MD:
National Center for Biotechnology Information; 2009 [cited 2016
July 14]. Available from: ftp://ftp.ncbi.nlm.nih.gov/pubchem/specifi
cations/pubchem_fingerprints.pdf.

78. Hawkins PCD, Skillman AG, Nicholls A. Comparison of shape-match-
ing and docking as virtual screening tools. J Med Chem. 2007;50
(1):74–82. doi:10.1021/jm0603365.

79. Fu G, Batchelor C, Dumontier M, et al. PubChemRDF: towards the
semantic annotation of PubChem compound and substance data-
bases. J Cheminform. 2015;7:34. doi:10.1186/s13321-015-0084-4.

•• A comprehensive overview of the PubChem RDF project.
80. Entrez Programming Utilities Help. Bethesda, MD: National Center

for Biotechnology Information; 2010 [cited 2016 July 19. Available
from: http://www.ncbi.nlm.nih.gov/books/NBK25501/.

81. PubChem Power User Gateway (PUG) Help. Bethesda, MD: National
Center for Biotechnology Information; 2007 [cited 2016 July 19].
Available from: https://pubchem.ncbi.nlm.nih.gov/pug/pughelp.
html.

82. PUG SOAP. Bethesda, MD: National Center for Biotechnology
Information; 2008 [cited 2016 July 19]. Available from: https://pub
chem.ncbi.nlm.nih.gov/pug_soap/pug_soap_help.html.

83. PUG REST. Bethesda, MD: National Center for Biotechnology
Information; 2012 [cited 2016 July 19]. Available from: https://pub
chem.ncbi.nlm.nih.gov/pug_rest/PUG_REST.html.

84. NCBI Website and Data Usage Policies and Disclaimers. Bethesda,
MD: National Center for Biotechnology Information; 2016 [cited
2016 July 14]. Available from: https://www.ncbi.nlm.nih.gov/
home/about/policies.shtml.

85. Resource Description Framework (RDF). The World Wide Web
Consortium (W3C); 2014 [cited 2016 July 14]. Available from:
http://www.w3.org/RDF/.

86. Heller S, McNaught A, Pletnev I, et al. InChI, the IUPAC international
chemical identifier. J Cheminform. 2015;7:23. doi:10.1186/s13321-
015-0068-4.

87. Bushman B, Anderson D, Fu G. Transforming the medical subject
headings into linked data: creating the authorized version of MeSH
in RDF. J Libr Metadata. 2015;15(3–4):157–176.

88. Jupp S, Malone J, Bolleman J, et al. The EBI RDF platform: linked
open data for the life sciences. Bioinformatics. 2014;30(9):1338–
1339. doi:10.1093/bioinformatics/btt765.

89. Kinjo AR, Suzuki H, Yamashita R, et al. Protein Data Bank Japan
(PDBj): maintaining a structural data archive and resource descrip-
tion framework format. Nucleic Acids Res. 2012;40(D1):D453–D60.
doi:10.1093/nar/gkr811.

90. Erxleben F, Günther M, Krötzsch M, et al. Introducing wikidata to
the linked data web. In: Mika P, Tudorache T, Bernstein A, et al.
editors. The semantic web – ISWC 2014. Cham: Springer
International Publishing; 2014. p. 50–65.

91. Li QL, Wang YL, Bryant SH. A novel method for mining highly
imbalanced high-throughput screening data in PubChem.
Bioinformatics. 2009;25(24):3310–3316. doi:10.1093/bioinformatics/
btp589.

92. Chang CY, Hsu MT, Esposito EX, et al. Oversampling to overcome
overfitting: exploring the relationship between data set composi-
tion, molecular descriptors, and predictive modeling methods. J
Chem Inf Model. 2013;53(4):958–971. doi:10.1021/ci4000536.

93. Hao M, Wang YL, Bryant SH. An efficient algorithm coupled with
synthetic minority over-sampling technique to classify imbalanced

854 S. KIM

http://dx.doi.org/10.1002/jcc.21347
http://dx.doi.org/10.1021/ci5007432
http://dx.doi.org/10.1186/s13321-016-0142-6
http://dx.doi.org/10.1093/bioinformatics/btu626
http://dx.doi.org/10.1093/nar/gkv1072
http://dx.doi.org/10.1093/nar/gkv1037
http://dx.doi.org/10.1016/j.tox.2014.09.003
http://dx.doi.org/10.1093/nar/gkt1208
http://dx.doi.org/10.1107/S2052520616003954
http://www.accessdata.fda.gov/scripts/cder/ob/
http://www.accessdata.fda.gov/scripts/cder/ob/
http://www.fda.gov/ForIndustry/DataStandards/SubstanceRegistrationSystem-UniqueIngredientIdentifierUNII/default.htm
http://www.fda.gov/ForIndustry/DataStandards/SubstanceRegistrationSystem-UniqueIngredientIdentifierUNII/default.htm
http://www.fda.gov/ForIndustry/DataStandards/SubstanceRegistrationSystem-UniqueIngredientIdentifierUNII/default.htm
http://www.fda.gov/ForIndustry/DataStandards/StructuredProductLabeling/ucm162549.htm
http://www.fda.gov/ForIndustry/DataStandards/StructuredProductLabeling/ucm162549.htm
http://www.fda.gov/ForIndustry/DataStandards/StructuredProductLabeling/ucm162549.htm
http://dailymed.nlm.nih.gov
http://www.almaden.ibm.com
http://dx.doi.org/10.1093/nar/gkv1253
https://www.surechembl.org
https://www.surechembl.org
https://www.nextmovesoftware.com/
https://www.nextmovesoftware.com/
http://dx.doi.org/10.1093/nar/gkr919
http://www.wipo.int/classifications/ipc/en/
http://dx.doi.org/10.1093/nar/gkv396
http://dx.doi.org/10.1186/1758-2946-3-6
http://dx.doi.org/10.1186/1758-2946-3-6
ftp://ftp.ncbi.nlm.nih.gov/pubchem/specifications/pubchem_fingerprints.pdf
ftp://ftp.ncbi.nlm.nih.gov/pubchem/specifications/pubchem_fingerprints.pdf
http://dx.doi.org/10.1021/jm0603365
http://dx.doi.org/10.1186/s13321-015-0084-4
http://www.ncbi.nlm.nih.gov/books/NBK25501/
https://pubchem.ncbi.nlm.nih.gov/pug/pughelp.html
https://pubchem.ncbi.nlm.nih.gov/pug/pughelp.html
https://pubchem.ncbi.nlm.nih.gov/pug_soap/pug_soap_help.html
https://pubchem.ncbi.nlm.nih.gov/pug_soap/pug_soap_help.html
https://pubchem.ncbi.nlm.nih.gov/pug_rest/PUG_REST.html
https://pubchem.ncbi.nlm.nih.gov/pug_rest/PUG_REST.html
https://www.ncbi.nlm.nih.gov/home/about/policies.shtml
https://www.ncbi.nlm.nih.gov/home/about/policies.shtml
http://www.w3.org/RDF/
http://dx.doi.org/10.1186/s13321-015-0068-4
http://dx.doi.org/10.1186/s13321-015-0068-4
http://dx.doi.org/10.1093/bioinformatics/btt765
http://dx.doi.org/10.1093/nar/gkr811
http://dx.doi.org/10.1093/bioinformatics/btp589
http://dx.doi.org/10.1093/bioinformatics/btp589
http://dx.doi.org/10.1021/ci4000536


PubChem BioAssay data. Anal Chim Acta. 2014;806:117–127.
doi:10.1016/j.aca.2013.10.050.

94. Zakharov AV, Peach ML, Sitzmann M, et al., QSAR modeling of
imbalanced high-throughput screening data in PubChem. J Chem
Inf Model. 54(3): 705–712. 2014. doi:10.1021/ci400737s.

• A research article that compares different sampling strategies
to address the HTS data imbalance issue.

95. Tang YC, Zhang YQ, Chawla NV, et al. SVMs modeling for highly
imbalanced classification. IEEE Trans Syst Man Cybern B Cybern.
2009;39(1):281–288. doi:10.1109/TSMCB.2008.2002909.

96. Chawla NV, Bowyer KW, Hall LO, et al. SMOTE: synthetic min-
ority over-sampling technique. J Artif Intell Res. 2002;16:321–
357.

97. Ling C, Sheng V. Cost-sensitive learning. In: Sammut C, Webb G,
editors. encyclopedia of machine learning. New York: Springer;
2010. p. 231–235.

98. Han LY, Ma XH, Lin HH, et al. A support vector machines approach
for virtual screening of active compounds of single and multiple
mechanisms from large libraries at an improved hit-rate and
enrichment factor. J Mol Graph Model. 2008;26(8):1276–1286.
doi:10.1016/j.jmgm.2007.12.002.

99. Ren JX, Li LL, Zheng RL, et al. Discovery of novel pim-1 kinase
inhibitors by a hierarchical multistage virtual screening approach
based on SVM model, pharmacophore, and molecular docking. J
Chem Inf Model. 2011;51(6):1364–1375. doi:10.1021/ci100464b.

100. Liu XH, Song HY, Zhang JX, et al. Identifying novel type ZBGs and
nonhydroxamate HDAC inhibitors through a SVM based virtual
screening approach. Mol Inform. 2010;29(5):407–420. doi:10.1002/
minf.200900014.

101. Ma XH, Wang R, Tan CY, et al. Virtual screening of selective multi-
target kinase inhibitors by combinatorial support vector machines.
Mol Pharm. 2010;7(5):1545–1560. doi:10.1021/mp100179t.

102. Villoutreix BO, Taboureau O. Computational investigations of hERG
channel blockers: new insights and current predictive models. Adv
Drug Deliv Rev. 2015;86:72–82. doi:10.1016/j.addr.2015.03.003.

103. Wishart DS, Jewison T, Guo AC, et al. HMDB 3.0-the human meta-
bolome database in 2013. Nucleic Acids Res. 2013;41(D1):D801–
D807. doi:10.1093/nar/gks1065.

104. Sedykh A, Zhu H, Tang H, et al. Use of in vitro HTS-derived con-
centration-response data as biological descriptors improves the
accuracy of QSAR models of in vivo toxicity. Environ Health
Perspect. 2011;119(3):364–370. doi:10.1289/ehp.1002476.

105. Kim MT, Huang R, Sedykh A, et al. Mechanism profiling of hepato-
toxicity caused by oxidative stress using antioxidant response ele-
ment reporter gene assay models and big data. Environ Health
Perspect. 2016;124(5):634–641. doi:10.1289/ehp.1509763.

106. Zhu H, Zhang J, Kim MT, et al., Big data in chemical toxicity
research: the use of high-throughput screening assays to identify
potential toxicants. Chem Res Toxicol. 27(10): 1643–1651. 2014.
doi:10.1021/tx500145h.

• A review article about the use of HTS data for development of
computational toxicity models.

107. Chen B, Wild D, Guha R. PubChem as a source of polypharmacology. J
Chem Inf Model. 2009;49(9):2044–2055. doi:10.1021/ci9001876.

108. Zhang JX, Han BC, Wei XN, et al. A two-step target binding and
selectivity support vector machines approach for virtual screening

of dopamine receptor subtype-selective ligands. PLoS One. 2012;7
(6):12.

109. Swamidass SJ, Schillebeeckx CN, Matlock M, et al. Combined ana-
lysis of phenotypic and target-based screening in assay networks. J
Biomol Screen. 2014;19(5):782–790. doi:10.1177/
1087057114523068.

110. Lounkine E, Nigsch F, Jenkins JL, et al. Activity-aware clustering of
high throughput screening data and elucidation of orthogonal
structure-activity relationships. J Chem Inf Model. 2011;51
(12):3158–3168. doi:10.1021/ci2004994.

111. Huang N, Shoichet BK, Irwin JJ. Benchmarking sets for molecular
docking. J Med Chem. 2006;49(23):6789–6801. doi:10.1021/
jm0608356.

112. Mysinger MM, Carchia M, Irwin JJ, et al. Directory of Useful Decoys,
Enhanced (DUD-E): better ligands and decoys for better bench-
marking. J Med Chem. 2012;55(14):6582–6594. doi:10.1021/
jm300687e.

113. Wallach I, Lilien R. Virtual decoy sets for molecular docking bench-
marks. J Chem Inf Model. 2011;51(2):196–202. doi:10.1021/
ci100374f.

114. Vogel SM, Bauer MR, Boeckler FM. DEKOIS: demanding evaluation
kits for objective in silico screening - a versatile tool for bench-
marking docking programs and scoring functions. J Chem Inf
Model. 2011;51(10):2650–2665. doi:10.1021/ci2001549.

115. Bauer MR, Ibrahim TM, Vogel SM, et al. Evaluation and optimization
of virtual screening workflows with DEKOIS 2.0-a public library of
challenging docking benchmark sets. J Chem Inf Model. 2013;53
(6):1447–1462. doi:10.1021/ci400115b.

116. Gatica EA, Cavasotto CN. Ligand and decoy sets for docking to G
protein-coupled receptors. J Chem Inf Model. 2012;52(1):1–6.
doi:10.1021/ci200412p.

117. Xia J, Jin HW, Liu ZM, et al. An unbiased method to build bench-
marking sets for ligand-based virtual screening and its application
to GPCRs. J Chem Inf Model. 2014;54(5):1433–1450. doi:10.1021/
ci500062f.

118. Schierz AC. Virtual screening of bioassay data. J Cheminform.
2009;1:21. doi:10.1186/1758-2946-1-21.

119. Rohrer SG, Baumann K. Maximum Unbiased Validation (MUV) data
sets for virtual screening based on PubChem bioactivity data. J
Chem Inf Model. 2009;49(2):169–184. doi:10.1021/ci8002649.

• A research article in which the Maximum Unbiased Validation
(MUV) data sets were developed from PubChem’s bioactivity
data.

120. Butkiewicz M, Lowe EW, Mueller R, et al. Benchmarking ligand-based
virtual high-throughput screening with the PubChem database.
Molecules. 2013;18(1):735–756. doi:10.3390/molecules18010735.

121. Lindh M, Svensson F, Schaal W, et al. Toward a benchmarking data
set able to evaluate ligand- and structure-based virtual screening
using public HTS data. J Chem Inf Model. 2015;55(2):343–353.
doi:10.1021/ci5005465.

122. Verdonk ML, Berdini V, Hartshorn MJ, et al. Virtual screening using
protein-ligand docking: avoiding artificial enrichment. J Chem Inf
Comput Sci. 2004;44(3):793–806. doi:10.1021/ci034289q.

123. Good AC, Hermsmeier MA, Hindle SA. Measuring CAMD technique
performance: a virtual screening case study in the design of valida-
tion experiments. J Comput Aided Mol Des. 2004;18(7–9):529–536.

EXPERT OPINION ON DRUG DISCOVERY 855

http://dx.doi.org/10.1016/j.aca.2013.10.050
http://dx.doi.org/10.1021/ci400737s
http://dx.doi.org/10.1109/TSMCB.2008.2002909
http://dx.doi.org/10.1016/j.jmgm.2007.12.002
http://dx.doi.org/10.1021/ci100464b
http://dx.doi.org/10.1002/minf.200900014
http://dx.doi.org/10.1002/minf.200900014
http://dx.doi.org/10.1021/mp100179t
http://dx.doi.org/10.1016/j.addr.2015.03.003
http://dx.doi.org/10.1093/nar/gks1065
http://dx.doi.org/10.1289/ehp.1002476
http://dx.doi.org/10.1289/ehp.1509763
http://dx.doi.org/10.1021/tx500145h
http://dx.doi.org/10.1021/ci9001876
http://dx.doi.org/10.1177/1087057114523068
http://dx.doi.org/10.1177/1087057114523068
http://dx.doi.org/10.1021/ci2004994
http://dx.doi.org/10.1021/jm0608356
http://dx.doi.org/10.1021/jm0608356
http://dx.doi.org/10.1021/jm300687e
http://dx.doi.org/10.1021/jm300687e
http://dx.doi.org/10.1021/ci100374f
http://dx.doi.org/10.1021/ci100374f
http://dx.doi.org/10.1021/ci2001549
http://dx.doi.org/10.1021/ci400115b
http://dx.doi.org/10.1021/ci200412p
http://dx.doi.org/10.1021/ci500062f
http://dx.doi.org/10.1021/ci500062f
http://dx.doi.org/10.1186/1758-2946-1-21
http://dx.doi.org/10.1021/ci8002649
http://dx.doi.org/10.3390/molecules18010735
http://dx.doi.org/10.1021/ci5005465
http://dx.doi.org/10.1021/ci034289q

	Abstract
	1.  Introduction
	2.  An overview of PubChem as a resource for VS
	2.1.  Data organization and chemical space coverage in PubChem
	2.2.  Bioactivity data in PubChem
	2.3.  Annotations available in PubChem
	2.4.  Availability of compounds for subsequent experiments
	2.5.  Patentability of compounds for intellectual property protection
	2.6.  PubChem 2-D and 3-D neighbors

	3.  Automation of VS pipelines
	3.1.  Programmatic access to PubChem for automated VS pipelines
	3.2.  PubChemRDF for data exchange and integration

	4.  Dealing with data imbalance issues in PubChem data
	4.1.  Imbalance in HTS data
	4.2.  Imbalance in literature-extracted data

	5.  Computational toxicity prediction models from PubChem bioactivity data
	5.1.  hERG-related cardiotoxicity prediction
	5.2.  Prediction of cytochrome P450s inhibition
	5.3.  Toxicity prediction models from cellular toxicity

	6.  Application of PubChem data for polypharmacology
	7.  Benchmark data sets for VS derived from PubChem data
	8.  Conclusion
	9.  Expert opinion
	Acknowledgments
	Funding
	Declaration of interest
	References



