
Published: April 14, 2011

r 2011 American Chemical Society 996 dx.doi.org/10.1021/ci200028n | J. Chem. Inf. Model. 2011, 51, 996–1011

ARTICLE

pubs.acs.org/jcim

Classification of Cytochrome P450 Inhibitors and Noninhibitors Using
Combined Classifiers
Feixiong Cheng,† Yue Yu,† Jie Shen,† Lei Yang,§Weihua Li,*,† Guixia Liu,† Philip W. Lee,†,‡ and Yun Tang*,†

†Department of Pharmaceutical Sciences, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road,
Shanghai 200237, China
‡Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
§School of Information Science & Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237,
China

bS Supporting Information

’ INTRODUCTION

Nowadays, coadministration of two or more drugs is a
common way for a patient during disease treatment.1 During
drug treatment, the patient has an increased risk of exposing
to potential adverse drug�drug interactions (DDIs).2 There are
about two million serious adverse drug reactions reported per
year in the United States, approximately 26% of which can be
attributed to avoidable DDIs.3

The human cytochromes P450 (CYPs), a superfamily of
heme-containing enzymes with about 57 isoforms, catalyze the
metabolism of a variety of endogenous and xenobiotic com-
pounds. The CYP enzymes, particularly isoforms 1A2, 2C9,
2C19, 2D6, and 3A4, are responsible for about 90% oxidative
metabolic reactions.4 Inhibition of CYP enzymes will lead to
inductive or inhibitory failure of drug metabolism.1,5,6 In the last
several decades, several commercial drugs were withdrawn from
the market due to adverse CYP enzymes DDIs, such as Seldane,
Posicor, Hismanal, Propulsid, Lotronex, Baycol, and Seraone.1,7

US FDA and the Pharmaceutical Research and Manufacturers of
America published the guidelines for the pharmaceutical indus-
try, urging that in vitro metabolic studies should be conducted
early in drug discovery to determine the metabolic inhibitive
properties of new chemical entities (NCEs), particularly for
members of the CYP superfamily.8

Many researchers had attempted to develop in vitro screening
techniques to identify potential CYP inhibitors in drug
discovery.9�11 Recently, Auld’s group using an in vitro biolumi-
nescent assay of quantitative high-throughput screening (qHTS)
determined the AC50 values (the compound concentration leads
to 50% of the activity of an inhibition control) of more than
17,000 compounds against five recombinant CYP isoforms (1A2,
2C9, 2C19, 2D6, and 3A4).11 These results provided a large and
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ABSTRACT: Adverse side effects of drug�drug interactions
induced by human cytochrome P450 (CYP) inhibition is an
important consideration, especially, during the research phase
of drug discovery. It is highly desirable to develop computa-
tional models that can predict the inhibitive effect of a com-
pound against a specific CYP isoform. In this study, inhibitor
predicting models were developed for five major CYP isoforms,
namely 1A2, 2C9, 2C19, 2D6, and 3A4, using a combined
classifier algorithm on a large data set containing more than
24,700 unique compounds, extracted from PubChem. The
combined classifiers algorithm is an ensemble of different independent machine learning classifiers including support vector
machine, C4.5 decision tree, k-nearest neighbor, and naïve Bayes, fused by a back-propagation artificial neural network (BP-ANN).
All developed models were validated by 5-fold cross-validation and a diverse validation set composed of about 9000 diverse unique
compounds. The range of the area under the receiver operating characteristic curve (AUC) for the validation sets was 0.764 to 0.815
for CYP1A2, 0.837 to 0.861 for CYP2C9, 0.793 to 0.842 for CYP2C19, 0.839 to 0.886 for CYP2D6, and 0.754 to 0.790 for CYP3A4,
respectively, using the new developed combined classifiers. The overall performance of the combined classifiers fused by BP-ANN
was superior to that of three classic fusion techniques (Mean, Maximum, and Multiply). The chemical spaces of data sets were
explored by multidimensional scaling plots, and the use of applicability domain improved the prediction accuracies of models. In
addition, some representative substructure fragments differentiating CYP inhibitors and noninhibitors were characterized by the
substructure fragment analysis. These classification models are applicable for virtual screening of the five major CYP isoforms
inhibitors or can be used as simple filters of potential chemicals in drug discovery.
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diverse bioassay database for the development of in silico
predictive models for CYP inhibitors.12

In the past several years, several in silicomodels to predict CYP
inhibitors had been reported. Poongavanam et al. applied the
support vector machine (SVM), random forest, kappa nearest
neighbor (k-NN), and decision tree methods to develop models
to classify CYP1A2 inhibitors and noninhibitors with an overall
predictive accuracy of about 75% for the internal test set.13

Jensen et al. also reported classification models for CYP2D6 and
3A4 inhibitors using Gaussian kernel weighted k-nearest neigh-
bor methods, but the sensitivity of test sets was only 59 and 65%
for the two isoforms, respectively.14 All reported models were
limited to one to three CYP isoforms, using rather limited
compound sets, and they are not very useful informative and
not useful in the drug discovery research.15�20 Developing
higher prediction accuracies P450 inhibition predicting models
using the diverse data set and new modeling methodologies such
as combined classifiers are very urgent.

In this paper, we reported a new method to classify CYP
inhibitors and noninhibitors by combining different single ma-
chine learning classifiers fused in a back-propagation artificial
neural network (BP-ANN) algorithm. Inhibitors and noninhibi-
tors classification models for five major CYP isoforms, namely
1A2, 2C9, 2C19, 2D6, and 3A4, based on a large data set of over
24,700 unique compounds with known CYP450 inhibition were
developed.11,21 The overall performance of the combined classi-
fiers fused by BP-ANNwas superior to that of three classic fusion
techniques (Mean, Maximum, and Multiply). High predictive
accuracies of the combined classifiers models were also obtained
for a diverse validation set. The use of applicability domain
improved the prediction accuracy of models. Moreover, some
representative substructure fragments common to CYP inhibi-
tors and noninhibitors were also identified via substructure
fragment analysis.

’MATERIALS AND METHODS

Data Set Collection. The initial PubChem database
(PubChem AID: 1851) in SMILES format was provided by
Dr. Auld.11,21 It contains 17,143 diverse compounds which were

measured by a standard protocol under the same experimental
conditions. Entries containing inorganic compounds, noncova-
lent complexes, and mixtures were excluded. Salts were con-
verted to the corresponding acids or bases; water molecules were
removed from hydrates. From the original list, 15,744 unique
compounds (Designated as PubChemData Set I) were extracted
as training set, and the detailed statistical description of this data
set is presented in Table 1.
According to the cutoff criterion of Auld’s reports and PubChem

BioAssay database,11,21 a compoundwas assigned as aCYP inhibitor
if the AC50 (the compound concentration leads to 50% of the
activity of an inhibition control) value was e10 μM, and it was
considered as a noninhibitor if AC50 was >57 μM.11,21 Compounds
with intermediate AC50 value (10 to 57 μM) were classified as
inconclusive compounds and were excluded in this study to avoid
uncertainty during models development. The PubChem ID num-
ber, SMILES, and inhibitor and noninhibitor labels of 15,744
unique compounds against CYP1A2, 2C9, 2C19, 2D6, and 3A4
are available online: http://www.lmmd.org/database.html.
In addition to the training set, a diverse validation set was

also collected from the PubChem BioAssay database21 for the
purpose of verifying the robustness of prediction models. The
same pretreatment of compound structure as described for
the training set was applied. Based on the classification criterion
of P450 inhibitor and noninhibitor in PubChem BioAssay
database,21 a compound was regarded as a CYP inhibitor
if it has the PubChem activity score between 40 and 100, and
as a noninhibitor if it has PubChem activity score equal to 0.
Compounds with the intermediate PubChem activity score
(1 to 39) were considered as inconclusive compounds and were
excluded. Duplicated compounds with PubChemData Set I were
also excluded. The diverse validation set containing 8988 unique
compounds was obtained. The detailed statistical description for
the entire validation set (Designated as PubChem Data Set II)
was presented in Table 1. The PubChem ID number, SMILES,
and inhibitor and noninhibitor labels of 8988 unique compounds
against five major CYP isoforms are available online: http://
www.lmmd.org/database.html.
In the PubChem BioAssay database,21 the PubChem activity

score is assigned according to the fitted IC50 value, with respect

Table 1. Detailed Statistical Description of 24,732 Unique Compounds in PubChem Data Sets I and II for Five Major CYP
Isoforms Based on the Multilabel Classification Strategy

data sets CYP isoforms number of inhibitors number of noninhibitors total Tanimoto index

PubChem Data Set Ia 1A2 5663 6436 12,099 0.206

2C9 4369 7761 12,130 0.208

2C19 5322 6563 11,885 0.212

2D6 2516 9365 11,881 0.209

3A4 4637 6899 11,536 0.200

PubChem Data Set IIb 1A2 1752 1052 2804 0.213

2C9 609 1970 2579 0.220

2C19 719 1972 2691 0.207

2D6 544 2316 2860 0.212

3A4 2070 4955 7025 0.113
a PubChemData Set I was collected from the National Center for Biotechnology Information (NCBI) PubChem database AID 1851 (http://pubchem.
ncbi.nlm.nih.gov/). Inhibitors: AC50 e 10 μM; Noninhibitors: AC50 > 57 μM; AC50: Compound concentration leads to 50% of the activity of an
inhibition control.11,21 b PubChem Data Set II: CYP1A2 from PubChem AID 410, CYP2C9 from PubChem AID 883, CYP2C19 from PubChem AID
899, CYP2D6 from PubChem AID 891, and CYP3A4 from PubChem AID 884 and 885. Inhibitors: PubChem Activity score equal 40 to 100;
Noninhibitors: PubChem Activity score equal 0.21
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to completeness of dose�response curve and efficacy of inhibi-
tion (maximum inhibition response).15 For example, if the IC50

of a compound is less than 40 μM, the PubChem activity score of
this compoundwas set as >40. In order to keep the consistency of
inhibitors and noninhibitors cutoff criterion between PubChem
Data Sets I and II, we checked the duplicated compounds of five
isoforms between them. As shown in Table S1 of the Supporting
Information, 99.6% compounds for CYP1A2, 99.4% compounds
for CYP2C9, 99.0% compounds for CYP2C19, 99.4% com-
pounds for CYP2D6, and 88.0% compounds for CYP3A4 have
the consistent inhibitors and noninhibitors labels among these
different experimental data sets. It suggests that the classification
threshold value used here is reasonable. The PubChem ID
number, SMILES, and inhibitor and noninhibitor labels of all
duplicated compounds (designated as inconclusive compounds)
against five isoforms are available online: http://www.lmmd.
org/database.html.
Data Description and Substructure Fragment Analysis.

The substructure pattern recognition method that we recently
developed in our laboratory22 was used for molecule description.
As shown in Figure 1, each molecule was described as a binary
string of structural keys. The predefined dictionary contained a
SMARTS list of substructure patterns. For a SMARTS pattern,
if a specified substructure is presented in the given molecule, the
corresponding bit is set to “1”; conversely, it is set to “0”. Two
substructure dictionaries of MACCS keys and FP4 fingerprints,
freely available from OpenBabel (version2.2.3, http://openba-
bel.org/, accessed Jan. 18, 2010),23 were used.MACCS keys used
a dictionary of MDL Public Keys,24 which contained 166 most
common substructure patterns. The dictionary of FP4 finger-
prints contained 307 substructure patterns.
An advantage of fingerprints is that they can be easily

translated into two-dimensional fragments. The representative
substructure fragments were explored using information gain
method22 and substructure fragment analysis.14 The frequency of
a fragment in a CYP inhibition class was defined as follows

Frequency of a fragment ¼ ðN fragment_class � NtotalÞ
ðNfragment_total � NclassÞ ð1Þ

where Nfragment_class is the number of compounds containing
the fragment in a CYP inhibition class, Ntotal is the total number
of compounds, Nfragment_total is the total number of compounds

containing the fragment, and Nclass is the number of compounds
in the CYP inhibition class.
Model Building. The entire computational workflow used

in this study is presented in Figure 2, and the architecture of
the classifiers combination algorithm is given in Figure 3. The
support vector machine algorithm was performed by the
LIBSVM2.9 package.25 C4.5 decision tree, k nearest neighbor,
and naïve Bayes calculations were performed using the Orange
canvas (Version 2.0b, free available on theWeb site http://www.
ailab.si/orange/). BP-ANN was performed using in-house
MATLAB scripts in accordance with the literature.26

Single Classifier Model
Support Vector Machine (SVM). The SVM algorithm, origin-

ally developed by Vapnik27 for pattern recognition, aims at
minimizing the structural risk under the frame of Vapnik-
Chervonenkis (VC) theory. Each molecule is represented
using an eigenvector t, and the selected patterns t1, t2, ..., tn are
the components of t. The category label y was added in SVM
training. The ith molecule in the data set is defined asMi = (ti, yi),
where yi = 1 for the “inhibitor” category and yi = �1 for
the “noninhibitor” category. SVM gives a decision function
(classifier)

f ðtÞ ¼ sgn
1
2 ∑

n

i¼ 1
RiKðti, tÞ þ b

 !
ð2Þ

where Ri is the coefficient to be trained, and K is a kernel
function. Parameter Ri is trained through maximizing the
Lagrangian expression given below

maximize
Ri

∑
n

i¼ 1
Ri � 1

2∑
n

i¼ 1
∑
n

j¼ 1
aiajyiyjKðti, tÞ

subject to : ∑
yi ¼ 1

yiai ¼ 0, 0 e ai e C
ð3Þ

The commonly used kernel function Gaussian radial basis
function (RBF) kernel was used. The different kernel parameter
γ and penalty parameter C were tuned based on the training set
using grid search strategy with a 5-fold cross-validation to obtain
a SVM model with optimal performance.
C4.5 Decision Tree (C4.5 DT).C4.5 builds decision trees from

a set of training data in the same way as Iterative Dichotomiser
3 (ID3). The elements of the tree generated by ID3 and C4.5
DT are either leafs or decision nodes. The leaf shows a class, and
the decision node specifies the test to be implemented on an
attribute value, with one branch and subtree for each possible
result of the test. The detailed descriptions of C4.5 DT can be
found in the original literature.28

k-Nearest Neighbors (k-NN). k-NN classifies objects based on
the closest training examples in the feature space. The nearness is
measured by a hamming distance matrix, and the standard
protocol of 3-NN is implemented simply as follows: (1) to
calculate the distances between an unknown object (y) and all
the objects in the training set; (2) to select 3 objects which are
most similar to object y from the training set according to the
calculated distances; and (3) to classify object y into the group to
which the majority of the 3 objects belongs.
Naı̈ve Bayes (NB). Bayesian classification is a statistical

method that allows the user to categorize instances in a data
set based on the equal and independent contributions of their
attributes.29 For Naïve Bayes classifier, it generates the posterior
probabilities which were given out directly based on the core

Figure 1. The definition of amolecular substructure pattern fingerprint.
The predefined dictionary contained a SMARTS list of substructure
patterns. For a SMARTS pattern, if a specified substructure is presented
in the given molecule, the corresponding bit is set to “1”; conversely, it is
set to “0”.
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function of eq 4

PðCijXÞ ¼ pCipðXjCiÞ
∑
j
pCjpðXjjÞ

ð4Þ

Combined Classifiers (CC) Model
Back-Propagation Artificial Neural Networks (BP-ANN). A

three-layer BP-ANNwas used. The number of nodes in the input
layer was decided by the combination probability outputs of
several independent single classifiers. We set two neurons in the

hidden layer and one neuron in the output layer. Besides, a bias of
value þ1 was set in the input layer and the hidden layer,
respectively. The topological structure of our network is not a
full-connected one. The input nodes which represent probability
of the instance belonging to theþ1 class only connect to theþ1
neuron in the hidden layer, whereas the other input nodes
connect to the �1 neuron. The hyperbolic tangent function
was used as the activation function in BP-ANN

f ðxÞ ¼ a tanhðbxÞ ð5Þ

Figure 2. The whole work-flow for combined classifiers models building and validation as applied for CYP1A2, 2C9, 2C19, 2D6, and 3A4. SVM
(Support Vector Machine), C4.5DT (C4.5 Decision Tree), k-NN (k-Nearest Neighbor), NB (Naïve Bayes), and Back-Propagation Artificial Neural
Network (BP-ANN).
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where a was set to 1.72, and b was set to 2/3 based on the
experience values.26

Momentum parameter R was applied to accelerate the
whole network’s convergence, so the weight update strategy is
changed to

ΔwjiðnÞ ¼ RΔwjiðn� 1Þ þ ηδjðnÞyiðnÞ ð6Þ

where Δwji(n � 1) is the updated value of synergic weight ij in
last epoch, η is the learning rate, and δj(n) is the local gradient of
neuron j. a = 0.5 and η = 0.02 were used in this study, and the
batch-learning method26 was used in the training process. In
addition, optimal synergic weights were decided by the training
data. When the change rate of average error rate between two
consecutive epochs was smaller than 0.001, the new connection
weights were considered to be optimal. Using this stopping
criterion is easy to get our network stuck in local optimal points.
Thus, we repeated the training process for 10,000 times to build
10,000 independent ANN models, each time with a new
randomly initiated connection weight. To maintain the max-
imum performance metric of overall predictive accuracy, we
used a helper test set which is held out subsets (10%) from
the test set to select the best ANN model. Then, the remaining
test set (90%) which was not used during the model training
and selection was used to evaluate the predictive power of the
combined classifiers. To avoid the bias from dividing the data set,
all results are obtained by averaging 10 times random dividing
process.
Probability Outputs. Classical machine learning algorithms

try to produce estimated target values (such asþ1 or�1) instead
of predictive probability ranges, which is easy to omit important
detailed information of each classifier. In order to utilize more
information of each single classifier, different strategies were
employed to get probability output of them.
Naı̈ve Bayes (NB). For the Naïve Bayes classifier, the posterior

probabilities can be given out based on the eq 4.

Support Vector Machine (SVM). Lin and Weng have devel-
oped a Bayesian approach for SVM to generate probability
estimation for each class in binary classification problems.30 In
the following we briefly described how to extend SVM for
probability estimation. For SVM probability estimation, given
k classes of data, for any x, the goal is to estimate

pi ¼ pðy ¼ ijxÞ, i ¼ 1, :::, k ð7Þ
First pairwise class probabilities are estimated

rij � pðy ¼ ijy ¼ i or j, xÞ ð8Þ
rij can be calculated by the following equation

rij � 1

1þ eA f
∧
þ B

ð9Þ

where A and B are estimated by minimizing the negative log-
likelihood function using the known training data and their
decision values f̂ . Labels and decision values are required to be
independent. Therefore a 5-fold cross-validation was conducted
to obtain the decision values. Once we have rij, we can obtain
pi by solving the following optimization problem30

min
p

1
2 ∑

k

i¼ 1
∑
j:j 6¼i

ðrjipi � rijpjÞ2 subject to ∑
k

i¼ 1
pi ¼ 1, pi g 0, " i

ð10Þ
A detailed description about solving strategy can be found in
Wu’s work.30

C4.5 Decision Tree (C4.5 DT). For C4.5 decision tree, the
Confusion Matrix and Posterior Probability Matrix were used to
export the probability output.
k-Nearest Neighbors (k-NN). For k-NN algorithm, we simply

defined the probability of an instance for any class as the proportion
of instances which belongs to one class in all its k-NN. For the
standard protocol of 3-NN, if two known nearest objects belong to
class y, the probability of this object belonging to y is 2/3.
Combined Classifiers Formulation. As above-mentioned, the

whole combination processwas performed on the probability output
of each independent SC and BP-ANN. The decision network
consists of two layers of units: input layer and output layer. First,
the training data was used to train the SVM,C4.5DT, k-NN, andNB
classifier separately. Then the training data were predicted with four
SC models to obtain the probability output (Pi

þ1 and Pi
�1 i =

1,2,3,4). These probability outputs were used as new descriptors to
develop BP-ANN models which generate the final combination
decision probability (PC

þ1 and PC
�1). During the prediction process,

the test set was first predicted by each SC model and then put into
the BP-ANN model developed by the training set. Finally, the
estimated resultswere obtained from the developedCCmodels. The
architecture of combined classifiers strategy is shown in Figure 3.
In addition, we also investigated three classic classifiers fusion

techniques: Mean, Maximum, and Multiply.
i Mean

μjðxÞ ¼ 1
L ∑

L

i¼ 1
di, jðxÞ ð11Þ

ii Maximum

μjðxÞ ¼ Maxifdi, jðxÞg ð12Þ

Figure 3. The architecture of the combined classifiers. Combined
Classifiers takes a set of probability output for inhibitors (þ1) or
noninhibitors (�1) by single classifier (SVM or C4.5DT or k-NN or
NB) and produces combination probability output for each class. SVM
(Support Vector Machine), C4.5DT (C4.5 Decision Tree), k-NN
(k-Nearest Neighbor), NB (Naïve Bayes), and Back-Propagation Arti-
ficial Neural Network (BP-ANN).
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iii Multiply

μjðxÞ ¼
YL
i¼ 1

di, jðxÞ ð13Þ

whereμj(x) represents the final combination decision probability
(PC

þ1 and PC
�1) of sample x, and L represents the independent

single classifier (i = 1,2,3,...,L.).
Chemical Space Analysis and Models Applicability Do-

mains. The chemical diversity and distribution in the chemical
space were explored by chemical descriptors and Tanimoto
similarity. First, the drug-likeness properties of the compound,
illustrated by the Lipinski’s Rule-of-Five,31 were calculated by
Discovery Studio 2.1.32 After that, the Tanimoto similarity
analysis was performed.33 Tanimoto similarity index is a classic
method to explore the diversity of compounds within a chemical
data set. Smaller the Tanimoto similarity index means that
compounds within the data set have good diversity.
Finally, a visualization of the chemical space was examined

based on the principal component analysis (PCA). The visual
chemical space map was generated for the PubChem Data Sets I
and II by projecting the MACCS keys on principal components
(PCs). The PCs for 24,732 unique compounds were calculated,
which were used to produce multidimensional scaling
(MDS)14,34 plots.
Defining model applicability domains (AD) is an active area of

modern quantitative structure activity/property relationship
(QSAR/QSPR) research. AD was estimated using Ambit Dis-
covery v0.04, which can be downloaded from http://ambit.acad.
bg/downloads/AmbitDiscovery/. The strategy of Ambit Dis-
covery is to estimate the domain for a given model using
molecule description data (described in the Section of Data
Set Description) in the model training set and then to use this
information to determine whether chemicals in a validation set lie
within the AD of the training set. Herein, MACCS keys-based
analysis was performed with PCA Data preprocessing to elim-
inate collinearities among model descriptors, range-based meth-
od and the 100% of training set points to determine AD. For the
ranges approach, chemicals were labeled out of domain (OD) if
at least one fragment count was out of range.35

Models Validation. The k-fold cross-validation techniques
and a diverse validation set were used to evaluate all models. In
a 5-fold cross-validation, the entire data set was equally divided
into five cross-validation splits. Within each step of cross-valida-
tion, the model was trained on a set of four cross-validation splits
together. The fifth subsample set was used as an internal valida-
tion set (test set). Moreover, a diverse validation set (PubChem
Data Set II) was used to validate the generalization abilities of
models.
All developed models were evaluated based on the counts of

true positives (TP), true negatives (TN), false positives (FP),
and false negatives (FN). TP represents the number of inhibitors
predicted as inhibitors; TN is the number of noninhibitors
predicted as noninhibitors; FP stands for the number of non-
inhibitors predicted as inhibitors; and FN represents the number
of inhibitors predicted as noninhibitors. Furthermore, the sensi-
tivity (SE = TP/(TP þ FN)), which is the prediction accuracy
of inhibitors, and the specificity (SP = TN/(TN þ FP)), which
is the prediction accuracy of noninhibitors, were calculated.
The overall predictive accuracy (Q) and the Matthews correla-
tion coefficient (C) were calculated using eqs 14 and 15,

respectively

Q ¼ TPþ TN
TPþ TNþ FPþ FN

ð14Þ

C ¼ TP� TN� FN� FPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTPþ FNÞðTPþ FPÞðTNþ FNÞðTNþ FPÞp ð15Þ

The C falls in the range of �1 e C e þ1. A value of C = 1
indicates perfect agreement between predicted and experimental
classes for each binary classifier, whereas C = �1 indicates the
worst possible prediction.
In addition, the receiver operating characteristic (ROC) curve

was plotted. The ROC curve was used to graphically present the
model behavior in a visual way. It shows the separation ability
of a binary classifier by iteratively setting the possible classifier
threshold.36

’RESULTS

Data Set Analysis. PubChem Data Set I consisted of 15,744
unique compounds. Based on the multilabel classification
strategy37 of “one-versus-the-rest”, the entire data sets were
divided into 5663 inhibitors and 6436 noninhibitors for CYP1A2,
4369 inhibitors and 7761 noninhibitors for CYP2C9, 5322
inhibitors and 6563 noninhibitors for CYP2C19, 2516 inhibitors
and 9365 noninhibitors for CYP2D6, and 4637 inhibitors and
6899 noninhibitors for CYP3A4 (Table 1). The entire data set
was diverse enough as the Tanimoto index was 0.206, 0.208,
0.212, 0.209, and 0.200 for the CYP1A2, 2C9, 2C19, 2D6, and
3A4 data sets, respectively. The drug-likeness of 15,744 unique
compounds was analyzed by calculating the descriptors of
Lipinski’s Rule-of-Five.31 885 compounds (5.6%) have molecular
weight greater than 500; 191 compounds (1.2%) have hydrogen
bond acceptors more than 10; 126 compounds (0.8%) have
hydrogen bond donors more than 5; and 1452 compounds have
the logP values greater than 5. In total, 13,551 compounds
(86.1%) conform to Lipinski’s Rule-of-Five, which indicates that
the entire data set has good drug-likeness.
The same analysiswas conducted for the validation set (PubChem

Data Set II). The Tanimoto index for the validation set was 0.213,
0.220, 0.207, 0.212, and 0.113 for CYP1A2, 2C9, 2C19, 2D6, and
3A4, respectively. In addition, the chemical spaces of inhibitors
and noninhibitors in PubChem Data Sets I and II were explored
by the PCA and MDS plots techniques. As shown in Figure 4,
there were diverse chemical space distributions for PubChem
Data Sets I and II in the MDS plots. The total variance explained
by PC1 and PC2 was 12.69 and 8.86%, respectively.
Construction of Binary Classification Models by Single

Classifier (SC). First, binary classification models of CYP1A2,
2C9, 2C19, 2D6, and 3A4 were developed using four indepen-
dent SC (SVM, C4.5DT, k-NN, and NB). The performance of
the 5-fold cross-validation for SC models was given in Table 2.
CYP1A2 models were built by the approximate balance data set
(5663 inhibitors vs 6436 noninhibitor). The high performance of
SE 78.6%, SP 84.7%, Q 81.8%, and C 0.635 was obtained for the
CYP1A2 model using the SVM algorithm with MACCS keys.
And the high performance of Q 81.7% and C 0.633 was also
obtained for the CYP1A2 model using the SVM algorithm with
FP4 fingerprints. For CYP2D6 models, a high performance
of Q 84.3 and 83.8% was obtained using the SVM algorithm
with MACCS keys and FP4 fingerprints, respectively. And the
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similarly high Q values of 77.8, 78.6, and 77.5% for CYP2C9,
2C19, and 3A4, respectively, were obtained using the SVM
algorithm with MACCS keys, which were evaluated by 5-fold
cross-validation.

Compared with SVM performance, C4.5 DT, k-NN, and NB
performed worse. For example, the Q value of CYP1A2 models
was 81.8% for SVM with MACCS keys. But theQ value was only
75.1, 77.5, and 75.1% for C4.5 DT, k-NN, and NB, respectively,

Figure 4. The multidimensional scaling (MDS) plot for the PubChem Data Set I (7255 inhibitors as red circles and 8489 noninhibitors as green
diamonds) and PubChemData Set II (3074 inhibitors as orange cross and 5914 noninhibitors as blue triangles) as described by the principal component
analysis (PCA). The total variance explained PC1 was 12.69% and PC2 was 8.86% for entire data set. Each dot represents one of the 24,732 unique
compounds.

Table 2. Performance of the 5-Fold Cross-Validation for Five Major CYP Isoforms Using the Single Classifiera

MACCS FP4

CYP isoforms methods SE (%) SP (%) Q (%) C SE (%) SP (%) Q (%) C

1A2 SVM 78.6 84.7 81.8 0.635 79.4 83.8 81.7 0.633

C4.5 DT 73.0 77.1 75.1 0.501 74.2 77.9 76.1 0.521

k-NN 80.7 74.8 77.5 0.554 84.7 64.7 74.1 0.501

NB 75.1 75.1 75.1 0.501 76.9 70.4 73.4 0.472

2C9 SVM 61.6 86.9 77.8 0.505 59.0 86.7 76.8 0.480

C4.5 DT 56.1 78.9 70.7 0.356 59.5 79.2 72.1 0.390

k-NN 65.5 77.8 73.4 0.429 72.2 69.0 70.2 0.397

NB 61.5 70.7 67.4 0.315 68.7 68.5 68.6 0.359

2C19 SVM 75.4 81.2 78.6 0.567 74.8 80.2 77.7 0.551

C4.5 DT 66.2 76.1 71.7 0.425 68.0 75.8 72.3 0.440

k-NN 63.0 80.8 72.8 0.447 51.6 86.0 70.6 0.405

NB 67.5 68.9 68.3 0.363 75.6 66.6 70.6 0.420

2D6 SVM 39.0 96.3 84.3 0.457 36.9 96.4 83.8 0.441

C4.5 DT 47.9 87.5 79.1 0.361 46.2 88.3 79.4 0.359

k-NN 51.0 88.7 80.7 0.408 58.0 82.7 77.5 0.379

NB 53.9 78.6 73.4 0.295 48.5 86.1 78.2 0.346

3A4 SVM 65.2 85.8 77.5 0.525 62.8 85.3 76.2 0.497

C4.5 DT 63.1 75.5 70.5 0.386 63.3 77.1 71.6 0.406

k-NN 69.4 74.8 72.6 0.437 74.0 64.6 68.3 0.378

NB 69.3 60.0 63.7 0.287 67.9 64.4 65.8 0.317
a Performances of classification model were given as follows: SE (sensitivity), SP (specificity), Q (overall predictive accuracy), and C (Matthews
correlation coefficient). SVM (support vector machine), C4.5 DT (C4.5 decision tree), k-NN (k-nearest neighbor), and NB (Naïve Bayes).
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using the same data description method. Similar performance
occurred for the CYP2C9, 2C19, 2D6, and 3A4models. This is in
agreement with previous studies, in which the SVM algorithm is
superior to other machine learning algorithms for the classifica-
tion of CYP substrates and inhibitors38 and toxicity prediction.39

Although the Q and C values of SVM were higher than those of
C4.5 DT, k-NN, and NB for CYP2C9 and 2D6, the SE of SVM
was anomaly low. For CYP2D6, the SE value was only 39.0%
using the SVM algorithm with MACCS keys. In contrast, the SE

value was 51.0 and 53.9% using k-NN and NB classifiers,
respectively, with the same data description. The similar perfor-
mance also occurred for the CYP2C9 models. This may
be caused by the unbalanced data set for CYP2C9 and 2D6.
The ratio of positive examples to negative examples was 0.56:1
for CYP2C9 and 0.26:1 for CYP2D6, respectively, as given in
Table 1. Therefore, we were particularly interested in the
performance of combining different single classifier algorithm
in the context of the unbalance data sets.

Table 3. Performance of the 5-Fold Cross-Validation for Five Major CYP Isoforms Using the Combined Classifiers (CC)a

MACCS FP4

CYP isoforms methods SE (%) SP (%) Q (%) C SE (%) SP (%) Q (%) C

1A2 CC-I 79.5 82.4 81.1 0.620 78.5 81.8 80.2 0.603

CC-II 80.0 82.5 81.3 0.626 77.1 83.9 80.7 0.612

CC-III 79.2 83.1 81.3 0.625 77.2 83.6 80.6 0.610

CC-IV 78.8 83.0 81.1 0.620 77.1 83.7 80.6 0.610

CC-V 77.9 78.3 78.1 0.561 75.5 78.9 77.3 0.544

Mean 79.1 80.9 80.0 0.600 81.4 77.1 79.1 0.584

Maximum 79.3 77.9 78.5 0.571 82.5 72.6 77.2 0.551

Multiply 79.6 79.0 79.3 0.585 83.0 74.1 78.3 0.571

2C9 CC-I 60.9 85.4 76.6 0.479 59.9 84.6 75.7 0.460

CC-II 63.3 85.1 77.3 0.498 61.1 84.4 76.0 0.468

CC-III 63.9 84.6 77.2 0.496 61.0 84.5 76.1 0.469

CC-IV 63.2 84.8 77.0 0.493 60.8 84.8 76.1 0.470

CC-V 59.0 83.5 74.7 0.438 56.8 83.1 73.7 0.414

Mean 64.2 82.4 75.8 0.471 68.0 79.5 75.4 0.471

Maximum 64.6 79.5 74.2 0.441 69.1 75.9 73.5 0.441

Multiply 65.1 81.3 75.4 0.466 69.6 77.0 74.4 0.457

2C19 CC-I 72.7 80.4 77.0 0.533 73.6 77.9 75.9 0.514

CC-II 72.9 82.1 78.0 0.553 72.7 80.7 77.1 0.536

CC-III 74.3 81.0 78.0 0.554 72.9 80.2 76.9 0.533

CC-IV 72.7 82.1 77.9 0.552 73.3 80.3 77.1 0.538

CC-V 70.2 77.0 74.0 0.473 70.5 77.3 74.2 0.479

Mean 65.5 75.7 71.1 0.414 65.5 77.8 72.3 0.437

Maximum 69.2 78.5 74.3 0.479 64.9 80.2 73.4 0.458

Multiply 68.0 78.3 73.7 0.466 63.9 80.6 73.1 0.452

2D6 CC-I 41.0 95.0 83.6 0.444 40.1 94.9 83.3 0.433

CC-II 39.7 95.6 83.8 0.447 39.0 95.2 83.3 0.428

CC-III 39.6 95.5 83.7 0.442 39.7 95.3 83.5 0.438

CC-IV 37.6 96.1 83.7 0.439 38.8 95.3 83.3 0.430

CC-V 37.1 95.0 82.8 0.408 37.0 94.7 82.5 0.398

Mean 47.1 93.4 83.6 0.461 45.6 93.3 83.2 0.445

Maximum 49.0 90.5 81.7 0.422 48.5 91.0 82.0 0.427

Multiply 48.3 92.3 82.9 0.448 48.0 91.8 82.5 0.437

3A4 CC-I 65.3 83.4 76.1 0.497 63.7 82.3 74.8 0.470

CC-II 64.6 84.9 76.7 0.509 62.2 83.7 75.1 0.473

CC-III 64.6 84.5 76.5 0.504 63.2 83.1 75.1 0.475

CC-IV 64.6 84.5 76.5 0.504 61.4 84.4 75.2 0.475

CC-V 61.4 81.8 73.6 0.442 59.5 81.0 72.4 0.416

Mean 70.0 79.0 75.4 0.490 68.9 77.3 74.0 0.461

Maximum 71.1 74.6 73.2 0.452 69.1 74.5 72.3 0.432

Multiply 70.7 77.7 74.9 0.481 69.6 75.1 72.9 0.443
a Performances of classification model were given as follows: SE (sensitivity), SP (specificity), Q (overall predictive accuracy), and C (Matthews
correlation coefficient). CC-I (SVMþC4.5DTþk-NNþNB), CC-II (SVMþk-NN), CC-III (SVMþC4.5DT), CC-IV (SVMþNB), and CC-V
(C4.5DTþk-NNþNB). SVM (support vector machine), C4.5DT (C4.5 decision tree), k-NN (k-nearest neighbor), NB (Naïve Bayes).
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Construction of Binary Classification Models by Com-
bined Classifiers (CC). In this work, five kinds of new CC were
designed based on the BP-ANN fusion rules. They include one
kind of four CC: SVMþC4.5DTþk-NNþNB (CC-I); three
kinds of two CC: SVMþk-NN (CC-II), SVMþC4.5DT (CC-
III), SVMþNB (CC-IV); and one kind of three CC: C4.5DTþ
k-NNþNB (CC-V). In addition, SVM, C4.5DT, k-NN, and
NB fused by three classic classifiers fusion techniques (Mean,
Maximum, and Multiply) were also evaluated. The performance
of different CC was given in Table 3, evaluated by the 5-fold
cross-validation.
As shown in Table 3, the reasonably high performance was

obtained for all five major CYP isoforms using CC evaluated by
5-fold cross-validation. For CYP1A2, the Q value was 81.1, 81.3,
81.3, 81.1, and 78.1% for the CC-I, CC-II, CC-III, CC-IV, and
CC-V, respectively, with MACCS keys. The similarly high C
value of 0.603 for CC-I, 0.612 for CC-II, 0.610 for CC-III, 0.610
for CC-IV, and 0.544 for CC-V were obtained with FP4
fingerprints. For CYP2C9, 2C19, 2D6, and 3A4, the similarly
high performances were obtained using CC in Table 3. Com-
pared to CC-I, CC-II, CC-III, CC-IV, the performance of CC-V
was the worst. For example, the C value of 2C19 classifica-
tion models was 0.533, 0.553, 0.554, and 0.552 for CC-I, CC-II,
CC-III, and CC-IV, respectively, which were higher than
0.473 for CC-V. The similar phenomenon occurred for CYP1A2,
2C9, 2D6, and 3A4 models. However, there are no obvious
differences between the CC-I, CC-II, CC-III, and CC-IV.
It showed that CC performed very well if they included the
SVM classifier. The detailed summaries of TP, TN, FP, and FN
in 5-fold cross-validation were presented in Table S2 of the
Supporting Information.
As shown in Table 3, the overall performance of CC fused by

BP-ANNwas higher than that of Mean, Maximum, andMultiply.
For Mean, Maximum, and Multiply, the prediction with the
simple average probability or the highest probability was selected.
Thus, the potential drawback is that a good prediction can be
overridden by many bad predictions. For CC fused by BP-ANN,
the individual class membership probabilities from the SC
models were used as the new descriptors to build new BP-
ANN classification models. So our developed new CC models
fused by BP-ANN can avoid some drawback ofMean, Maximum,
and Multiply and outperform better than these classic fusion
techniques. Our finding is in agreement with Kramer’s reports.40

Assessment of Generalization Abilities. Generalization
ability of a model decides the usefulness and reliability of models.
Herein, a diverse validation set (PubChem Data Set II) contain-
ing 8988 unique compounds was further used to examine the
performance of SC and CC models. First, the data sets of 5663
inhibitors and 6436 noninhibitors for CYP1A2, 4369 inhibitors
and 7761 noninhibitors for CYP2C9, 5322 inhibitors and 6563
noninhibitors for CYP2C19, 2516 inhibitors and 9365 noninhi-
bitors for CYP2D6, and 4637 inhibitors and 6899 noninhibitors
for CYP3A4 in PubChem Data Set I were used as the new
training sets to develop CYP1A2, 2C9, 2C19, 2D6, and 3A4 new
global classification models, respectively. Then, new developed
global models were further validated by the PubChemData Set II
to test the generalization abilities of models.
The performances of SC and CC models for the validation set

without applying AD were summarized in Tables 4 and 5. The
high Q values ranged from 86.2 to 87.6% were obtained for
CYP2D6 using CC with MACCS keys. A similarly high pre-
dictive accuracy was obtained for CYP1A2, 2C9, 2C19, and 3A4,

as presented in Table 4. For the classification problem, the
measurement of the area under the receiver operating character-
istic curve (AUC)was highly recommended.59 The AUC value of
the validation sets for different CC and SVM models were given
in Table 5. The AUC value was 0.764 to 0.815 for CYP1A2, 0.837
to 0.861 for CYP2C9, 0.793 to 0.842 for CYP2C19, 0.839 to
0.886 for CYP2D6, and 0.754 to 0.790 for CYP3A4, respectively,
using the BP-ANN combined classifiers. The detailed summaries
of TP, TN, FP, and FN for the validation sets were presented in
Table S3 of the Supporting Information. These results indicated
that the reasonable high prediction accuracies were obtained here
using our new developed CC models.
Fragments Characteristics between Inhibitors and Non-

inhibitors.To further explore the structural features of inhibitors
and noninhibitors against CYP isoforms selectivity, IG method,
and substructure fragment analysis14,22 were performed on the
24,732 unique compounds by combining PubChem Data Sets I
and II (Table 1) using FP4 fingerprints. The representative sub-
structure fragments characterizing inhibitors and noninhibitors
against different CYP isoforms and the frequency of fragment
occurrence were identified as shown in Table 6 and Table S4.
As shown in Table 6, the patterns of Alcohol, Primary_alcohol,

Secondary_alcohol, Tertiary_alcohol, 1,2-Diol, 1,2-Aminoalcohol,

Table 4. Overall Predictive Accuracy (Q) of Five Major CYP
Isoforms Validation Sets with Full Coverage (100% - No
Applicability Domain)a

Q (%)

data description methods 1A2 2C9 2C19 2D6 3A4

MACCS SVM 68.0 86.6 80.3 87.8 74.9

C4.5 DT 68.3 78.1 77.5 82.6 70.6

k-NN 69.0 81.5 80.7 84.5 70.4

NB 61.0 69.4 70.5 80.6 69.3

CC-I 71.3 86.5 80.6 87.5 75.1

CC-II 72.0 86.7 80.8 87.5 74.9

CC-III 72.3 86.3 80.5 87.5 74.6

CC-IV 73.1 86.4 80.4 87.6 75.0

CC-V 69.9 83.6 80.4 86.2 74.2

Mean 68.1 84.0 76.6 87.2 73.6

Maximum 67.0 81.5 79.7 86.0 72.8

Multiply 67.1 82.7 79.5 86.8 73.7

FP4 SVM 67.6 84.2 80.5 86.4 75.6

C4.5 DT 65.8 78.8 77.2 78.5 72.0

k-NN 69.7 78.4 77.9 81.1 66.3

NB 59.7 75.4 73.5 80.2 70.9

CC-I 70.7 84.5 80.2 85.6 75.8

CC-II 71.2 84.6 81.0 86.1 75.8

CC-III 70.8 84.6 80.7 85.8 76.0

CC-IV 71.7 84.1 80.7 85.6 75.4

CC-V 70.2 83.2 79.0 84.5 75.0

Mean 67.2 81.9 77.5 85.6 74.8

Maximum 66.5 80.0 78.1 83.9 74.0

Multiply 67.3 81.1 77.9 85.2 73.9
a Performances of classification models were given as follows: Overall
predictive accuracy (Q). CC-I (SVMþC4.5DTþk-NNþNB), CC-II
(SVMþk-NN), CC-III (SVMþC4.5DT), CC-IV (SVMþNB), and
CC-V (C4.5DTþk-NNþNB), SVM (support vector machine), C4.5DT
(C4.5 decision tree), k-NN (k-nearest neighbor), and NB (Naïve Bayes).
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and Alpha_Amino_acid were presented more frequently in
noninhibitors than inhibitors against five major CYP isoforms.
The patterns of Aryl_chloride and Aryl_bromide were presented
more frequently in inhibitors than noninhibitors against five CYP
isoforms, which is consistent with the known preference for
planar, polyaromatic substrates of CYP isoforms, particularly for
CYP1A2.41 The patterns of Primary_aliph_amine and Ammo-
nium were associated with compounds showing low or non-
inhibitive activities against five isoforms. Yet, secondary_aliph_
amine and tertiary_aliph_amine showed some isoform-specific
behavior for CYP2D6. For example, secondary_aliph_amine and
tertiary_aliph_amine were presented more frequently in non-
inhibitors than inhibitors against CYP1A2, 2C9, 2C19, and 3A4,
but they were presented more frequently in inhibitors than
noninhibitors against CYP2D6, which is in agreement with the
known preference of CYP2D6 for substrates containing basic,
protonatable nitrogen atoms.42 The substructure fragment of
Carboxylic_acid was presented more frequently in noninhibitors
than inhibitors against five CYP isoforms. There is a minor
difference for patterns of Carboxylic_ester. Carboxylic_ester was
presented more frequently in noninhibitors than inhibitors
against CYP1A2 and 2C19, but it was presented more frequently
in inhibitors than noninhibitors against CYP2C9, 2D6, and 3A4.
The pattern of Oximether was strongly correlated with non-
inhibitory activities against CYP1A2, 2C9, and 2D6. In contrast,
it was more frequently in inhibitors than noninhibitors against
CYP3A4. The pattern of Alkyl_imide was also strongly corre-
lated with noninhibitory activities against CYP1A2, 2C9, 2C19,
and 2D6, yet it was equally correlated with inhibitory and

noninhibitory activities against CYP3A4. The pattern of Nitrile
was more frequently in inhibitors than noninhibitors against
CYP1A2, 2C9, and 3A4. In contrast, it was weakly correlated with
noninhibitory activities against CYP2C19 and 2D6.

’DISCUSSION

Comparing Single Classifier (SC) with Combined Classi-
fiers (CC). Although there exists many machine learning algo-
rithms, there are a few single algorithms which have both the
accuracy and robustness to handle the challenge of a real world
problems.43 Previous studies showed that the accuracy of classi-
fications by combining independent single classifier was higher
than that of any single classifier.40,44 The combined strategies
and ensemble modeling have been successfully applied in some
research fields, such as consensus docking scoring,45,46 the
similarity fusion approach,47 consensus or ensemble QSAR/
QSPR models,40,48�50 and high-throughput screening (HTS)
data analysis and screening.51

The objective of this prospective methodological study was
to explore the suitability of combined classifiers modeling tools
for P450 inhibition prediction. Four reliable and independent
SC, namely SVM, C4.5 DT, k-NN, and NB, were fused by the
BP-ANN algorithm. Five different CC including CC-I, CC-II,
CC-III, CC-IV, and CC-V were designed and evaluated here.
Hunag and Suen also found that a ANN combinator compared
favorably to other combination methods in pattern recognition
problems.52 Recently, Tulyakov et al. reviewed classifiers combi-
nation methods and its theoretical basis.53 When developing
ANN fusion CC models, generalization is an issue because the
ANN model is often easier to overfit the data and generalize
poorly on new data when training data are insufficient or
unevenly distributed.54 In order to avoid this problem, first we
employed Momentum parameter R to accelerate the entire
network’s convergence. Then we repeated the training process
for 10,000 times to avoid ANN stuck in local optimal point. As
shown in Tables 4 and 5, the reasonable high prediction
accuracies were obtained for the validation sets. It indicated that
all combined classifiers models developed here had good general-
ization abilities.
The results of systematic comparisons among different SC

and CC models were plotted in Figure 5, which reported the
distribution of overall predictive accuracy rate from averaging 10
times realization for CYP1A2 validation set (more details can be
found in Table S3 of the Supporting Information). As shown in
Figure 5, the overall predictive accuracy of CC-I, CC-II,
CC-III, and CC-IV outperformed than any SC,Mean,Maximum,
and Multiply. On average, CC-IV achieved the highest accuracy
(73.1%) followed by CC-III (72.3%), CC-II (72.0%), and CC-I
(71.3%), respectively. SVM performed relatively worse with an
average accuracy rate of 68.0%. NB behaved worst with the
lowest average accuracy rate of 61.0%. The systematic compar-
isons among different SC and CC models for CYP2C9, 2C19,
2D6, and 3A4 validation sets were also plotted in Figure S1 of
the Supporting Information. As shown in Figure S1, the overall
accuracy rate of CC marginally outperformed the best SC of
SVM and the other three classic fusion techniques. For the
CYP2D6 validation set, the overall predictive accuracy of CC
models fused by BP-ANN was equal to the SVM model.
However, the overall predictive accuracy rate of the CYP1A2
validation set using CC improved 5% than SVM.When analyzing
the detail performance of CYP1A2 and 2D6 validation sets, we

Table 5. Area under the Receiver Operating Characteristic
Curve (AUC) Value of Five Major CYP Isoforms Validation
Sets with Full Coverage (100% - No Applicability Domain)a

AUC

data description methods 1A2 2C9 2C19 2D6 3A4

MACCS CC-I 0.809 0.857 0.838 0.880 0.780

CC-II 0.806 0.861 0.842 0.880 0.777

CC-III 0.814 0.850 0.839 0.872 0.775

CC-IV 0.815 0.853 0.829 0.886 0.785

CC-V 0.776 0.837 0.829 0.860 0.754

Mean 0.801 0.845 0.756 0.881 0.778

Maximum 0.789 0.813 0.670 0.874 0.765

Multiply 0.795 0.829 0.704 0.879 0.772

SVM 0.814 0.854 0.841 0.880 0.783

FP4 CC-I 0.805 0.842 0.798 0.860 0.790

CC-II 0.798 0.850 0.815 0.860 0.783

CC-III 0.794 0.827 0.812 0.839 0.787

CC-IV 0.805 0.837 0.793 0.842 0.792

CC-V 0.764 0.844 0.819 0.841 0.777

Mean 0.782 0.848 0.774 0.856 0.790

Maximum 0.772 0.836 0.674 0.843 0.784

Multiply 0.778 0.842 0.729 0.851 0.788

SVM 0.803 0.832 0.820 0.848 0.785
a Performances of classification models were given as follows:
CC-I (SVMþC4.5DTþk-NNþNB), CC-II (SVMþk-NN), CC-III
(SVMþC4.5DT), CC-IV (SVMþNB), and CC-V (C4.5DTþk-
NNþNB), SVM (support vector machine), C4.5DT (C4.5 decision
tree), k-NN (k-nearest neighbor), and NB (Naïve Bayes).
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found that SVM performed as a weak classifier for CYP1A2 but it
performed as a strong classifier for CYP2D6. It showed that CC
fused by BP-ANN can obtain the higher performance when
combining several weak classifiers, but it only marginally

improved or at least retained the performance of the best SC
when combining the strong and weak classifiers. This phenom-
enon was also emerged in 5-fold cross-validation. In 5-fold cross-
validation, SVM classifier all performed a very strong classifier for

Table 6. Occurrence and Frequency of 20 Representative Substructure Fragments in the PubChem Data Sets I and IIa

aNI is the number of inhibitors in inhibitor class with specified pattern t. Nnon-I is the number of noninhibitors in noninhibitor class with specified pattern t.
The data in square bracket represent the frequency of a fragment in inhibitor or noninhibitor class, respectively.
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CYP1A2, 2C9, 2C19, 2D6, and 3A4. So our developed CC
models only obtained the performance of the best single classifier
of SVM in 5-fold cross-validation.
As presented in Tables S2 and S3 of the Supporting Informa-

tion, the overall performance of CC models marginally outper-
form or equally perform SVM. However, the SE value of CC
models was higher than SVMmodels. It is important to highlight
that sensitivity is the most important parameter in a classification
model. In fact, the low sensitivity value indicates the low ability of
a model to recognize the inhibitors from diverse compounds.
Why CC models can improve the SE value? The key step of
combined classifiers is to get probability output of each SC
model. In this study, the SC can be viewed as an institute that
could convert theMACCS keys or FP4 fingerprints data into new
descriptors (new probability outputs) toward a more reasonable
orientation, i.e., all the spatial position of each chemical instance
are rearranged using the SC. The classifiers combination algo-
rithm based on BP-ANN fusion rules can automatically account
for the strengths and score ranges of the SC. So our developed
CC models were expected to perform more balance than any SC
models. Admittedly, we still have to bear a risk of introducing
more errors into the final output.
It is worth noting that the overall performance of CC-V was

better than C4.5 DT, k-NN, and NB. As shown in Table 4, for
CYP3A4 validation set, the overall predictive accuracy was 74.2%
for CC-V models, which was higher than 70.6% of C4.5 DT,
70.4% of k-NN, and 69.3% ofNB. And overall predictive accuracy
of 74.2% for the CC-V model was near the 74.9% of the SVM
model. The similar phenomenon was performed for CYP1A2,
2C9, and 2C19 validation sets. In addition, we also compared the
performance of the single BP-ANN models with our new
developed combined classifiers models. New single BP-ANN
classification models were developed using PubChem Data Set I
and validated by PubChem Data Set II with MACCS keys. As

shown in Table S5 of the Supporting Information, the overall
performance of single BP-ANN classifier models was anomaly
lower than CC models. It further proved that CC strategies can
improve the performance of weak classifiers. And combining
some different weak classifiers can obtain the performance of a
strong single classifier. This is consistent with the idea that the
combinational or ensemble models are usually more reliable than
its component models.49,55�57

Role of the Applicability Domain (AD). It is well-known that
the predictive reliability is a very important issue given the fact
that any QSAR/QSPR model is characterized by its applicability
domain (AD). If the test molecule is too far away from a training
set member as defined by the user based on a combination of
distance and similarity matrix of choice, the performance of the
model is usually poor.58 Herein, the chemical spaces of the
training set and the validation set were first explored by MDS
plots.14,34 As shown in Figure 4, the entire data set covered
diverse chemical space, and the chemical domain of the valida-
tion set (PubChem Data Set II) was basically located in the
training set (PubChemData Set I), which ensured the reasonable
high prediction accuracies of the validation set.
The number of validation chemicals determined to be in

domain (ID) and out of domain (OD) based on AD analysis
were presented in Table 7. For the classification problem, the
measurement of the area under the ROC was highly
recommended.59 The AUC values of different CC models with
MACCS keys for ID and OD chemicals were calculated and
given in Table 8. As expected, the AUC value of ID chemicals was
higher than OD chemicals. The detailed summaries of SE, SP,Q,
and C values for ID and OD chemicals were given in Table S6 of
the Supporting Information. As shown in Table S6 of the
Supporting Information, the C value of CYP2D6 OD chemicals
was only 0.346 using CC-I with MACCS keys, which was
significantly lower than the C value 0.576 of ID chemicals. The

Figure 5. Box plot shows the minimum, lower quartile (Q1), median (Q2), upper quartile (Q3), and maximum of the overall predictive accuracy rate
from averaging 10 times realization on CYP1A2 validation set with MACCS keys. SVM (Support Vector Machine), C4.5DT (C4.5 Decision Tree),
k-NN (k-Nearest Neighbor), NB (Naïve Bayes). CC-I (SVMþC4.5DTþk-NNþNB), CC-II (SVMþk-NN), CC-III (SVMþC4.5DT), CC-IV
(SVMþNB), CC-V (C4.5DTþk-NNþNB), Max (Maximum).



1008 dx.doi.org/10.1021/ci200028n |J. Chem. Inf. Model. 2011, 51, 996–1011

Journal of Chemical Information and Modeling ARTICLE

C value of CYP2C19 OD chemicals were only 0.276 using CC-I
withMACCS keys, which was significantly lower than theC value
of 0.480 for ID chemicals. The similar low performance occurred
in CYP1A2, 2C9, and 3A4 OD chemicals. Overall, we concluded
that the use of the AD method can lead to improvements in
predictive accuracy for the validation sets, although the improve-
ment came at the expense of lower chemistry space coverage.
Recently, Didziapetris et al. built the CYP3A4 inhibitor and
noninhibitor classification models and applied the reliability
index to explore the AD. The higher predictive accuracies were
obtained after applying the reliability index.15 Herein, we did not
systematically investigate different AD assessment methods, as it
was beyond the range of this article. Our groups are actively
investigating this important issue.
Diversity of Data Set. Another critical point for developing

QSAR models is the diversity of the training set, especially for
global models. ADMET predicting models limited their applica-
tions when traditionally developed by the small data sets from the
literature or combining data sets from different groups. In vitro
screening conditions often differed in different experimental
laboratories and published literatures, which often resulted in
unnecessary errors. In addition, some data sets only covered a
small region of chemical space focused on drug-like molecules.60

Recently, several local classification models for P450 substrates
and inhibitors were developed, which only built based on the
FDA data set or some drug-likeness molecules reported in the
literature.15�20,37 Although high predictive accuracies were ob-
tained for these models, the extremely finite chemical space
limited their applications when confronting the real world

chemical space, such as virtual screening molecules in drug
discovery. Thus, it is important to develop models using high
quality diverse data set tested in the same screening condition
from various sources, such as public databases (PubChem,
BindingDB (http://www.bindingdb.org/)) and pharmaceutical
and biotechnology companies.60 Unlike previous studies, we first
took advantage of a high-quality data set containing 15,744
unique compounds with known inhibition of AC50 value tested
in the same experimental condition by Auld’s group,11 which is
believed to be so far the largest public one. High quality P450
inhibition classification models were built using our new devel-
oped combined classifiers. As shown in Tables 4 and 5, the
reasonable high accuracies were obtained for the diverse valida-
tion sets. These global classification models are applicable for
virtual screening of the five major CYP isoforms inhibitors or can
be used as simple filters of potential chemicals in drug discovery.
Features and Physical Meanings of the Substructure

Fragments. Interpretation of QSAR/QSPR models is the most
important issue. In this study, some representative substructure
fragments characterizing inhibitors and noninhibitors against
CYP1A2, 2C9, 2C19, 2D6, and 3A4 were identified by combin-
ing information gain and substructure fragment analysis. As given
in Table 6, the presence of Carboxylic_acid, Primary_alcohol,
Secondary_alcohol, Tertiary_alcohol, 1,2-Diol, 1,2-Aminoalco-
hol, and Alpha_Amino_acid were frequently associated with
noninhibitors against five major CYP isoforms. It indicated that
the existence of these fragments is unfavorable for CYP1A2, 2C9,
2C19, 2D6, and 3A4 inhibition. Arylchloride or Arylbromide
were frequently associated with inhibitors against five isoforms;41

secondary_aliph_amine and tertiary_aliph_amine showed some
isoform-specific behavior for CYP2D6, which is consistent with
the known preference of CYP2D6 for substrates containing
basic, protonatable nitrogen atoms.42 Recently, Jensen et al. also
searched the frequent structural fragments of noninhibitors and
inhibitors for CYP2D6 and 3A4 based on the small data sets.
They found that carboxyl acid fragments were more frequent in
noninhibitors than inhibitors of both CYP2D6 and 3A4. Auld
et al. also identified some key structural features based on 16,144
unique compounds against CYP1A2, 2C9, 2C19, 2D6, and
3A4.11 Our results were in agreement with Jensen’s14 and Auld’s
findings.11 The substructure fragment analysis can characterize
the important fragments favorable or unfavorable for P450
inhibition, but they cannot characterize the spatial arrangement
of these important fragments if multiple important fragments are

Table 7. Numbers of Chemicals Were Determined To Be In
Domain (ID) and Out of Domain (OD) in the Validation Sets
Using Application Domain Assessment Methodsa

in domain (ID) out of domain (OD)

CYP isoforms NI Nnon-I total NI Nnon-I total

1A2 1717 1023 2740 35 29 64

2C9 595 1914 2509 14 56 70

2C19 698 1837 2535 21 135 156

2D6 530 2218 2748 14 98 112

3A4 1953 4743 6696 117 212 329
aNI represents the number of inhibitors. Nnon-I represents the number
of noninhibitors.

Table 8. Area under the Receiver Operating Characteristic Curve (AUC) Value of In Domain (ID) and Out of Domain (OD)
Chemicals Using Combined Classifiers with MACCS Keysa

AUC (in domain) AUC (out of domain)

methods 1A2 2C9 2C19 2D6 3A4 1A2 2C9 2C19 2D6 3A4

CC-I 0.803 0.858 0.829 0.875 0.779 0.714 0.723 0.754 0.732 0.739

CC-II 0.805 0.863 0.824 0.886 0.777 0.766 0.732 0.753 0.733 0.762

CC-III 0.805 0.855 0.827 0.888 0.784 0.756 0.723 0.744 0.731 0.759

CC-IV 0.818 0.855 0.836 0.878 0.780 0.761 0.721 0.759 0.722 0.748

CC-V 0.787 0.850 0.829 0.862 0.756 0.644 0.702 0.740 0.732 0.701

Mean 0.802 0.849 0.760 0.886 0.781 0.692 0.713 0.629 0.742 0.731

Maximum 0.795 0.819 0.675 0.881 0.770 0.682 0.700 0.541 0.735 0.726

Multiply 0.796 0.832 0.709 0.883 0.775 0.687 0.710 0.577 0.740 0.729
aCC-I (SVMþC4.5DTþk-NNþNB), CC-II (SVMþk-NN), CC-III (SVMþC4.5DT), CC-IV (SVMþNB), and CC-V (C4.5 DTþ
k-NNþNB). SVM (Support Vector Machine), C4.5DT (C4.5 Decision Tree), k-NN (k-Nearest Neighbor), and NB (Naïve Bayes).
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found simultaneously in a chemical. Anyways, these meaningful
substructure fragments identified here can potentially provide
scaffold modification for exploring potential metabolic relation
toxicological profiles, such as DDIs problems in the early drug
discovery phase.
Comparison with Literature. A direct comparison of our

results with previous studies is inappropriate, because the data
sets and data description methods were different between the
various models. Nevertheless, a simple comparison of the model
statistics could provide some basic information about the accu-
racy of the various CYP inhibition predicting methodologies.
In this study, we built inhibitors and noninhibitors classification
models for five major CYP isoforms (1A2, 2C9, 2C19, 2D6, and
3A4) based on the largest data set (more than 20,000
compounds). These data sets not only cover diverse chemical
space (Figure 4) but also have good drug-likeness based on
Lipinski’s Rule-of-Five (seeing Data Set Analysis). Recently,
Vasanthanathan et al. built the CYP1A2 inhibitors and noninhi-
bitors classification models using the different machine learning
methods.13 The overall predictive accuracy of the best SVM
models was 73 to 76% for the internal test set and only 67% for
the external validation set of 89 drug molecules. In this study, the
overall predictive accuracy of CYP1A2 models was 78.1 to 81.3%
for the 5-fold cross-validation and 69.9 to 72.3% for the diverse
validation set using the combined classifiers, which was higher
than those of Vasanthanathan’s models.13 As shown in Tables 4
and 5, the reasonable high overall predictive accuracies for the
validation set were obtained using the CCmethod. However, the
specificity was higher than sensitivity for most models, which also
occurred in the 5-fold cross-validation. For example, in the
validation set of CYP2D6, the range of the SE value was from
53.1 to 63.1%, but the range of the SP value was from 91.6 to
94.7% using CC with MACCS keys (Table S3 of the Supporting
Information). The similar performance occurred for CYP2C9,
2C19, and 3A4. Jensen et al. also found a similar phenomenon
that specificity value was 94% for both CYP2D6 and 3A4 models
in the internal test set. However, the SE values were only 59 and
65% for CYP2D6 and 3A4 models, respectively.14

’CONCLUSIONS

In this study, combined classifiers models were developed to
predict inhibition of CYP1A2, 2C9, 2C19, 2D6, and 3A4. For the
first time, the prediction models were systematically developed
for five major CYP isoforms based on the largest data set of more
than 24,700 unique compounds. The range of overall predictive
accuracies was 77.2 to 81.3%, 73.5 to 77.3%, 72.3 to 78.0%, 81.7
to 83.7%, and 72.3 to 76.7% for CYP1A2, 2C9, 2C19, 2D6, and
3A4, respectively, using combined classifiers, evaluated by the
5-fold cross-validation. The generalization ability of models was
further validated by the diverse validation set of about 8900
unique compounds. The range of AUC values for the validation
sets was 0.764 to 0.815 for CYP1A2, 0.837 to 0.861 for CYP2C9,
0.793 to 0.842 for CYP2C19, 0.839 to 0.886 for CYP2D6, and
0.754 to 0.790 for CYP3A4, respectively, using the newly devel-
oped combined classifiers. The overall performance of our newly
developed combined classifiers fused by BP-ANN was superior to
that of three classic fusion techniques of Mean, Maximum, and
Multiply, and the use of applicability domain can improve the
prediction accuracy. Moreover, some representative substructure
patterns were also identified to characterize inhibitors and non-
inhibitors against the fivemajorCYPs isoforms.Wewillmake all of

combined classifiers models and software code available to inter-
ested scientists upon request and will collaborate toward establish-
ing a publicly available Web server for predicting P450 inhibition.

In conclusion, the models developed here are reasonable
robust and accuracy, which can be applicable for virtual screening
of large databases and for predicting potential metabolic relation
toxicological profiles, i.e., drug�drug interactions, caused by
CYP1A2, 2C9, 2C19, 2D6, and 3A4 inhibition in the early stage
of drug discovery.

The PubChem ID number, SMILES, and inhibitor and non-
inhibitor labels of 24,732 unique compounds against CYP1A2,
2C9, 2C19, 2D6, and 3A4 are available online: http://www.
lmmd.org/database.html.
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