

Fall 2015 Cheminformatics OLCC
Module 8: Interacting with Databases: Desktop and Web Based Applications Week 1

1

Module 8: Interacting with Databases:

Desktop and web based applications
Andrew Lang (alang@oru.edu) & Jordi Cuadros,

(jordi.cuadros@iqs.url.edu)

Learning Objectives

● Have a basic understanding of the main interfaces and technologies involved in using

Web APIs

● Gain a knowledge of the main chemistry Web APIs

● Be able to pull chemical information programmatically from some chemistry online

databases and services

Module Structure

Week I

8.1 Why using databases programmatically?

8.2 Technological aspects behind using a web API

8.3 Main chemistry APIs

Week I activities

Week II

8.4 Other relevant sources for data: Other web APIs & web scrapping

8.5 An introduction to programming and to using string functions

8.6 Calling the APIs programmatically from desktop (spreadsheets) and web based

applications (Javascript & Google scripts)

Week II activities

mailto:alang@oru.edu
mailto:jordi.cuadros@iqs.url.edu

Fall 2015 Cheminformatics OLCC
Module 8: Interacting with Databases: Desktop and Web Based Applications Week 1

2

Module 8: Interacting with Databases:

Desktop and web based applications

(Week I)
Andrew Lang (alang@oru.edu) & Jordi Cuadros,

(jordi.cuadros@iqs.url.edu)

8.1 Why using databases programmatically?

Information is essential to many professions and chemistry is no exception. As chemists we

frequently have to look up chemical information in handbooks or databases; you can name

it: formation enthalpies and entropies, solubilities, ionization constants, densities of mixtures,

spectra...

Much of this information, although available, is spread among several handbooks, databases

and/or papers in scientific journals. Sometimes we are able to find the information in well

organized data sources and occasionally these are available online and can be accessed

programmatically.

When this is the case, accessing programmatically to these sources offers the following

advantages:

● Availability and convenience. Curated and updated information is at your fingerprints.

The information can be retrieved from your computer or your mobile device without

requiring heavy applications or huge databases.

● Economy. Many of these source offers data on licensing options that allow using it at

no-cost in different contexts and environments.

● Knowledge and data sharing, reusing and repurposing. Many of the sources that are

available fit onto the open access policies which are slowly being adopted by the

scientific communities. Likewise, this open data allows you to build other applications

and personal mashups.

Some example projects that make use of open databases are:

● Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/

● JSmol: an open-source HTML5 viewer for chemical structures in 3D.

http://wiki.jmol.org/index.php/JSmol

● Open Notebook Science Web Services. http://onswebservices.wikispaces.com/

● SpectralGame. http://lxsrv7.oru.edu/~alang/

● MolView. http://molview.org/

mailto:alang@oru.edu
mailto:jordi.cuadros@iqs.url.edu
http://www.jmol.org/
http://wiki.jmol.org/index.php/JSmol
http://wiki.jmol.org/index.php/JSmol
http://onswebservices.wikispaces.com/
http://lxsrv7.oru.edu/~alang/
http://molview.org/

Fall 2015 Cheminformatics OLCC
Module 8: Interacting with Databases: Desktop and Web Based Applications Week 1

3

● CheMagic. http://chemagic.com/molecules/VMKMINInotes.htm

Further reading

● O'Boyle, N. M., Guha, R., Willighagen, E. L., Adams, S. E., Alvarsson, J., Bradley, J.

C., ... & Murray-Rust, P. (2011). Open Data, Open Source and Open Standards in

chemistry: The Blue Obelisk five years on. J. Cheminformatics, 3, 37. Available at

http://www.biomedcentral.com/content/pdf/1758-2946-3-37.pdf

http://chemagic.com/molecules/VMKMINInotes.htm
http://www.biomedcentral.com/content/pdf/1758-2946-3-37.pdf

Fall 2015 Cheminformatics OLCC
Module 8: Interacting with Databases: Desktop and Web Based Applications Week 1

4

8.2 Technological aspects behind using a web API

One common way to offer open data to be used programmatically is through a web API.

Before digging into the most relevant chemistry APIs, we will spend a moment discussing

some technological aspects that should be known in order to use it.

What’s a web API?

An API (Application Programming Interface) is the set of elements that a programming

library or service makes available to other programmers to be used remotely to access their

services and data.

This API is called a web API when these functionalities are delivered via the HTTP protocol

through the Internet.

How is a web API used?

In order to be able to get information from an online database, we will need to:

1. Send a query to the database through the Internet (HTTP protocol)

2. Understand the format in which the response will be received

3. Process this response to extract the desired information

Sending the query... - The HTTP protocol and the REST

architecture

HTTP stands for HyperText Transfer Protocol and it comprises the set of rules that control

the transfer of a resource between a web server and a web client (usually a browser).

The basic elements of an HTTP transaction are:

● A request message

● A response message (which is usually the resource being transferred)

The HTTP request message

The request message consists in some text data sent to an URL (Uniform Resource

Locator). An URL is a way of specifying an address in the Internet.

The general structure for an URL consists of

scheme://[user:password@]domain:port/path?query_string#fragmen

t_id

Fall 2015 Cheminformatics OLCC
Module 8: Interacting with Databases: Desktop and Web Based Applications Week 1

5

although in HTTP this commonly simplified to

http://domain/path or https://domain/path

The request message, which is usually handled by the HTTP client, has the following

structure

● A first line which includes method, path and HTTP protocol version, usually

METHOD /path HTTP/x.x

● Several header lines

● A blank line

● And an optional message body

The HTTP request methods: GET and POST

Although other methods exist, the most common request methods are GET and POST.

In the GET method, any additional information required to specify the request is included in

the URL (which means in the path included in the first line of the message). The parameters

are included after the path and a question mark as pairs name=value. Parameters are

separated by the ampersand symbol (&)

/path?name1=value1&name2=value2

In some cases, as we will see in PubChem API, the parameters are included in the path.

This technique is called URL rewriting and shortens the URLs and makes it more usable.

/path/name1/value1/name2/value2

or even

/path/value1/value2

In POST methods, any additional information is not included in the URL but in the body of

the message and is usually submitted via a web form. We won’t go further into this method

since most of the chemistry APIs can be queried via GET calls.

To end this brief introduction to HTTP, note that some characters are either disallowed or

have special meaning in URLs. When these characters appear they will need to be encoded;

for example a space is encoded as %20, and a sharp (#) is %23. A reference can be found

at http://www.w3schools.com/tags/ref_urlencode.asp.

The HTTP response message

As we have seen for the request, the response contains:

● A first line

● Several header lines

● A blank line

● And a message body which is the transferred resource

Two aspects of the response to be highlighted are the status code (included in the first line)

and the content-type information (which is one of the headers).

http://www.w3schools.com/tags/ref_urlencode.asp

Fall 2015 Cheminformatics OLCC
Module 8: Interacting with Databases: Desktop and Web Based Applications Week 1

6

HTTP status codes are indicated as a three-digit number

● 200 means transaction completed successfully

● 3xx means some type of redirection

● 4xx means a client-side error

○ 404 means resource not found

● 5xx means a server-side error

○ 500 means unexpected server error

The content type parameter indicates what data is included in the message body. Each type

of resource is indicated with a standardized string (Internet media type; aka MIME type). For

example, some common response formats are

● HTML file: text/html

● XML file: application/xml or text/xml

● CSV file: text/csv

● JSON file: application/json

● PNG image: image/png

Querying the databases

We have so far seen how the information is transmitted over the WWW. But how are

databases accessed over the WWW? There are two main architectures used to access

databases over the Net: SOAP and REST. Given its prevalence, we will center our

discussion on the REST architecture.

Some major characteristics of the REST (REspresentational State Transfer) architecture are:

● It is usually implemented over HTTP.

● The queries are implemented as GET requests.

● The communication is stateless. Any query must contain all required information.

Nothing is saved in the server.

● The query result is obtained as a response in a predefined format: XML, JSON, CSV,

HTML, plain text...

Further reading

● http://code.tutsplus.com/tutorials/http-the-protocol-every-web-developer-must-know-

part-1--net-31177

● http://code.tutsplus.com/tutorials/a-beginners-guide-to-http-and-rest--net-16340

● https://www.addedbytes.com/articles/for-beginners/url-rewriting-for-beginners/

● https://www.iana.org/assignments/media-types/media-types.xhtml

● http://www.restapitutorial.com/

http://code.tutsplus.com/tutorials/http-the-protocol-every-web-developer-must-know-part-1--net-31177
http://code.tutsplus.com/tutorials/http-the-protocol-every-web-developer-must-know-part-1--net-31177
http://code.tutsplus.com/tutorials/a-beginners-guide-to-http-and-rest--net-16340
https://www.addedbytes.com/articles/for-beginners/url-rewriting-for-beginners/
https://www.iana.org/assignments/media-types/media-types.xhtml
http://www.restapitutorial.com/

Fall 2015 Cheminformatics OLCC
Module 8: Interacting with Databases: Desktop and Web Based Applications Week 1

7

Understanding the responses... - Common structured data

filetypes

Common formats in which a web API may provide its response are HTML, XML, CSV,

JSON and plain text. A short explanation of the first four types follows next. Feel free to skip

it if you already know their characteristics.

HTML (HyperText Markup Language)

HTML is the standard language used to create web pages. When a web API outputs its

result in HTML, this resource is usually intended to be viewed a browser. When no better

option is available, HTML can be processed (parsed) to extract a specific information.

Likewise, any web page is published as HTML and so can be processed to extract any

relevant information contained therein.

An example of HTML can be found here: http://kinetics.nist.gov/janaf/html/Cl-054.html

This the output of a search in the NIST-JANAF Thermodynamical Tables online database.

The full HTML code can be read looking at the source of the page. A fragment is reproduced

in Figure 1.

Figure 1. Part of the HTML code of a page

More information on HTML can be found at http://www.w3schools.com/html/.

XML (eXtensible Markup Language)

XML is a markup language designed to contain structured data in format easy to be read by

computers and for humans. An example of an XML response can be found running the

following query:

http://kinetics.nist.gov/janaf/html/Cl-054.html
http://www.w3schools.com/html/

Fall 2015 Cheminformatics OLCC
Module 8: Interacting with Databases: Desktop and Web Based Applications Week 1

8

https://pubchem.ncbi.nlm.nih.gov/rest/pug/compound/cid/1/property/MolecularFormula,Molec

ularWeight,InChIKey/XML. Figure 2 shows its response.

Figure 2. An XML response

More information on XML can be found at http://www.w3schools.com/xml/.

CSV (Comma Separated Values)

CSV, for Comma Separated Values, is a plain-text file format use to store tabular data. In

practice, CSV is not a unique format but different variations depending on the

implementation and the regional setup of the operating system.

CSV main features:

● Data is stored as plain text.

● Records are separated by new-line characters.

● Each record contains several fields. Columns (fields) are separated by a delimiting

character (usually a comma, a semicolon or a tab).

● Each record must have the same number of fields.

CSV main variations:

● Any encoding may be used for the text file: ASCII, Latin-1, UTF-8...

● Values may be quoted or not.

● End-of-line character, delimiting character, quotes and escaping sequences may

vary.

● There may be header lines.

An example of a response in CSV is obtained when running the following query

http://pubchem.ncbi.nlm.nih.gov/rest/pug/compound/cid/1000,1001/assaysummary/CSV.

The response is shown in Figure 3.

https://pubchem.ncbi.nlm.nih.gov/rest/pug/compound/cid/1/property/MolecularFormula,MolecularWeight,InChIKey/XML
https://pubchem.ncbi.nlm.nih.gov/rest/pug/compound/cid/1/property/MolecularFormula,MolecularWeight,InChIKey/XML
http://www.w3schools.com/xml/
http://pubchem.ncbi.nlm.nih.gov/rest/pug/compound/cid/1000,1001/assaysummary/CSV

Fall 2015 Cheminformatics OLCC
Module 8: Interacting with Databases: Desktop and Web Based Applications Week 1

9

Figure 3. Fragment of a CSV response

More information can be obtained at https://en.wikipedia.org/wiki/Comma-separated_values.

JSON (JavaScript Object Notation)

JSON, for JavaScript Object Notation, is a format that encodes data object as human-

readable text, organized as pairs attribute-value (name:value). Its main features are being a

quite compact notation with easy conversion to Javascript objects (eval(),

JSON.parse()).

An example query is

https://pubchem.ncbi.nlm.nih.gov/rest/pug/compound/name/aspirin/property/MolecularWeigh

t/JSON. The response is shown in Figure 4.

Figure 4. A JSON response

More information can be found at http://www.json.org/.

https://en.wikipedia.org/wiki/Comma-separated_values
https://pubchem.ncbi.nlm.nih.gov/rest/pug/compound/name/aspirin/property/MolecularWeight/JSON
https://pubchem.ncbi.nlm.nih.gov/rest/pug/compound/name/aspirin/property/MolecularWeight/JSON
http://www.json.org/

Fall 2015 Cheminformatics OLCC
Module 8: Interacting with Databases: Desktop and Web Based Applications Week 1

10

Processing the responses... - Parsers and string functions

Ultimately the response will need to be processed to extract the desired information. This

can be done using specific functions or parsers or through the use of some simple string

manipulation functions.

Sometimes you want to parse XML or HTML using custom string functions for deleting

whitespace, finding the position of certain characters within strings and for extracting

substrings. These functions (plus many more) appear in all commonly used languages.

Table 1 summarizes some of these functions in the programming environments we will be

discussing next week.

Table 1. Main string functions

Spreadsheet (Excel, Calc)
Basic (VBA,
Libre Basic)

Javascript

SEARCH, FIND InStr search, indexOf

MID Mid substr, substring

SUBSTITUTE Replace replace

TRIM Trim trim

CONCATENATE & (operator), concat

Fall 2015 Cheminformatics OLCC
Module 8: Interacting with Databases: Desktop and Web Based Applications Week 1

11

8.3 Main chemistry APIs

CIR (Chemical Identifier Resolver)

The Chemical Identifier Resolver is one of several online tools offered by the CADD Group

Chemoinformatics Tools and User Services at the National Cancer Institute.

The CIR web service will convert one identifier (e.g. SMILES) to another (e.g. formula). It

can be accessed via a web form with an inbuilt structure editor at

http://cactus.nci.nih.gov/chemical/structure or via its web API.

An incomplete web API reference is found at

http://cactus.nci.nih.gov/chemical/structure_documentation. Further information can be

obtained either by using the form version of the tool or by reading the web services blog:

http://cactus.nci.nih.gov/blog.

The general structure for querying the web service is

http://cactus.nci.nih.gov/chemical/structure/”structure

identifier”/”representation”

where “structure identifier” is the input and “representation” indicates the desired identifier for

output.

An example query is http://cactus.nci.nih.gov/chemical/structure/aspirin/smiles which returns

a unique SMILES for aspirin.

Default output format is plain text, but XML output can be obtained by appending /xml to

the URL, e.g. http://cactus.nci.nih.gov/chemical/structure/aspirin/names/xml.

OPSIN (Open Parser for Systematic IUPAC nomenclature)

OPSIN (Open Parser for Systematic IUPAC nomenclature) is service provided by the Centre

for Molecular Informatics at the University of Cambridge. It can be used to generate a

structure (and some common identifiers) from a systematic chemical name.

The reference for the web service can be found at

http://opsin.ch.cam.ac.uk/instructions.html. Its entry point is http://opsin.ch.cam.ac.uk/opsin.

The query should be set as

http://opsin.ch.cam.ac.uk/opsin/”name”.”type”

where “name” refers to the chemical to be processed and “type” indicates the expected

response.

http://cactus.nci.nih.gov/chemical/structure
http://cactus.nci.nih.gov/chemical/structure_documentation
http://cactus.nci.nih.gov/blog
http://cactus.nci.nih.gov/chemical/structure/aspirin/smiles
http://cactus.nci.nih.gov/chemical/structure/aspirin/names/xml
http://opsin.ch.cam.ac.uk/instructions.html
http://opsin.ch.cam.ac.uk/opsin

Fall 2015 Cheminformatics OLCC
Module 8: Interacting with Databases: Desktop and Web Based Applications Week 1

12

For example, http://opsin.ch.cam.ac.uk/opsin/benzoic+acid.smi returns the SMILES

representation of benzoic acid.

CDK (Chemistry Development Kit)

The CDK is an open source program that can generate descriptors from structure. It can be

used online as a web API from a server at Uppsala University or by installing it on your own

host.

Documentation is available at http://rest.rguha.net/. Servers are provided at the very bottom

of the page.

For example, http://ws1.bmc.uu.se:8182/cdk/fingerprint/std/CCO shows a fingerprint for

ethanol (plain text response) and http://ws1.bmc.uu.se:8182/cdk/depict/200/200/CCO

provides a 2D image of this molecule in PNG.

The list of available molecular descriptors can be looked up at /cdk/descriptors.

ChemSpider

ChemSpider APIs allow programmatic access to part of the ChemSpider databases at The

Royal Society of Chemistry. They can be accessed through SOAP and/or a REST interface.

Some operations require a security token which can be obtained by registering (free) and

looking it up in the user profile page.

ChemSpider web services includes four different APIs: Search API, InChI API, MassSpec

API and Spectra API. The general documentation is available at

http://www.chemspider.com/aboutservices.aspx.

ChemSpider Search API allows searching ChemSpider databases by chemical identifier,

structure or properties and retrieve information about the associated records. All operations

require a security token and some require a service subscriber role. Not all operations are

available through a REST interface. The documentation can be found at

http://www.chemspider.com/Search.asmx.

Response is usually XML and binary information is base64 encoded. Note that some

operations are asynchronous. A first call launches the calculation and an id is produced. The

id is then used to access the response in a second call to GetAsyncSearchResult.

An example is http://www.chemspider.com/Search.asmx/

GetCompoundInfo?csid=1&token=xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx

where token must be replaced with the user’s one. Results are shown in Figure 5.

http://opsin.ch.cam.ac.uk/opsin/benzoic+acid.smi
http://rest.rguha.net/
http://ws1.bmc.uu.se:8182/cdk/fingerprint/std/CCO
http://ws1.bmc.uu.se:8182/cdk/depict/200/200/CCO
http://www.chemspider.com/aboutservices.aspx
http://www.chemspider.com/Search.asmx

Fall 2015 Cheminformatics OLCC
Module 8: Interacting with Databases: Desktop and Web Based Applications Week 1

13

Figure 5. A search result from ChemSpider Search API.

ChemSpider InChI API allows interconversion between some chemical identifiers, namely

CSID, mol, InChI, InChIKey and SMILES. Few operations require a security token and/or are

not available through a REST interface. Documentation is found at

http://www.chemspider.com/InChI.asmx. Response is usually in XML.

An example is http://www.chemspider.com/InChI.asmx/SMILESToInChI?smiles=CCO.

ChemSpider MassSpec API allows searching ChemSpider by formula or by mass. All

operations require a security token and some require a service subscriber role. Not all

operations are available through a REST interface. Documentation is available at

http://www.chemspider.com/MassSpecAPI.asmx.

Response is usually XML. Some operations are asynchronous; a first call launches the

calculation and an id is produced. The id is then used to access the response in a second

call to GetAsyncSearchResult (Search API).

An example is the call

http://www.chemspider.com/MassSpecAPI.asmx/SearchByMass2?mass=1888&range=0.1.

ChemSpider Spectra API allows searching spectra in ChemSpider database. All operations

require a security token with a service subscriber role. The documentation is available at

http://www.chemspider.com/Spectra.asmx.

PubChem

PubChem, a product of the National Center for Biotechnology Information, is accessed

programmatically through the PUG (Power User Gateway) service. This service can be used

either directly or via any of its two interfaces: PUG SOAP or PUG REST. We will, for now,

ignore the SOAP interface and focus on the PUG REST service.

When accessed directly, PUG is a queued service that allows searching and downloading of

records in the PubChem database: substances and compounds, structures, bioassays...

Queries are sent via an HTTP POST call with request and response messages being XML

http://www.chemspider.com/InChI.asmx
http://www.chemspider.com/InChI.asmx/SMILESToInChI?smiles=CCO
http://www.chemspider.com/MassSpecAPI.asmx
http://www.chemspider.com/MassSpecAPI.asmx/SearchByMass2?mass=1888&range=0.1
http://www.chemspider.com/Spectra.asmx

Fall 2015 Cheminformatics OLCC
Module 8: Interacting with Databases: Desktop and Web Based Applications Week 1

14

documents. Documentation can be found at

https://pubchem.ncbi.nlm.nih.gov/pug/pughelp.html and

http://www.ncbi.nlm.nih.gov/home/api.shtml.

The PUG REST interface offers a way to access the PubChem database with the

convenience of the REST architecture. It allows us to query the PubChem database for data

on substances (uncurated data), compounds (curated data) or assays. Documentation is

available at https://pubchem.ncbi.nlm.nih.gov/pug_rest/PUG_REST_Tutorial.html and

https://pubchem.ncbi.nlm.nih.gov/pug_rest/PUG_REST.html. Although most operations are

synchronous, some (the asynchronous ones) require a two-step query for obtaining the

response (a listkey is returned).

The general structure for using PUG REST is

PUG REST output format can be any of the formats shown in Table 2.

Table 2. PubChem output formats

Two examples queries are

https://pubchem.ncbi.nlm.nih.gov/rest/pug/compound/name/aceticacid/PNG and

https://pubchem.ncbi.nlm.nih.gov/rest/pug/compound/name/methanol/property/IUPACName,

MolecularWeight/CSV. The responses are shown in Figures 6 and 7.

Figure 6. A PNG response from PubChem PUG REST API.

https://pubchem.ncbi.nlm.nih.gov/pug/pughelp.html
http://www.ncbi.nlm.nih.gov/home/api.shtml
https://pubchem.ncbi.nlm.nih.gov/pug_rest/PUG_REST_Tutorial.html
https://pubchem.ncbi.nlm.nih.gov/pug_rest/PUG_REST.html
https://pubchem.ncbi.nlm.nih.gov/rest/pug/compound/name/aceticacid/PNG
https://pubchem.ncbi.nlm.nih.gov/rest/pug/compound/name/methanol/property/IUPACName,MolecularWeight/CSV
https://pubchem.ncbi.nlm.nih.gov/rest/pug/compound/name/methanol/property/IUPACName,MolecularWeight/CSV

Fall 2015 Cheminformatics OLCC
Module 8: Interacting with Databases: Desktop and Web Based Applications Week 1

15

Figure 7. A CSV response from PubChem PUG REST API.

PDB (Protein DataBank)

RSCB (Research Collaboratory for Structural Bioinformatics) PDB (Protein DataBank) offers

three web services to ease accessing to its data. These are documented at

http://www.rcsb.org/pdb/software/rest.do.

Currently they include a HTTP POST query method for advanced searching, a simple search

REST API for ligands using SMILES as identifier, and a REST API for fetching descriptions

of ligands, structures, files, annotations from a PDB id.

The simple search REST API returns the identifiers and descriptions for the ligands

matching the search query. For example,

http://www.rcsb.org/pdb/rest/smilesQuery?smiles=CC%23C&search_type=substructure

performs a substructure search including the group CC#C. Part of the results are shown in

Figure 8.

Figure 8. Part of the response to substructure search in PDB.

The fetch API allows the retrieval of the data in the database from its identifiers in PDB. For

example, http://www.rcsb.org/pdb/rest/describeHet?chemicalID=CB3 recovers the data for

the chemical with id CB3. Responses are commonly in XML.

http://www.rcsb.org/pdb/software/rest.do
http://www.rcsb.org/pdb/rest/smilesQuery?smiles=CC%23C&search_type=substructure
http://www.rcsb.org/pdb/rest/describeHet?chemicalID=CB3

Fall 2015 Cheminformatics OLCC
Module 8: Interacting with Databases: Desktop and Web Based Applications Week 1

16

ChEMBL

The last API accessible database we will consider is ChEMBL, which is a database of

bioactive drug-like small molecules hosted at the European Bioinformatics Institute. It

provides a RESTful API which responds in XML, JSON or YAML. The main documentation

is available at https://www.ebi.ac.uk/chembl/ws.

The API is split into two services:

● data, for accessing the database

● utils, for accessing some cheminformatics tools

The data API allows searching in the ChEMBL database for assays, molecules, target, cell-

lines... It includes options for filtering and searching by similarity or substructure. Note that

results are paginated. If the number of records returned is larger than 20, you may have to

take care of this. This API is documented at https://www.ebi.ac.uk/chembl/api/data/docs.

An example of using this API is

https://www.ebi.ac.uk/chembl/api/data/molecule.json?molecule_structures__canonical_smile

s__flexmatch=OCC. The result in JSON format is shown in Figure 10.

Figure 10. JSON response for the ChEMBL data API

The utils API offers some interesting function to obtain molecular descriptors and to generate

or process graphical representations of molecules, but requires most inputs as base64

encoded strings. Documentation can be found at

https://www.ebi.ac.uk/chembl/api/utils/docs.

https://www.ebi.ac.uk/chembl/ws
https://www.ebi.ac.uk/chembl/api/data/docs
https://www.ebi.ac.uk/chembl/api/data/molecule.json?molecule_structures__canonical_smiles__flexmatch=OCC
https://www.ebi.ac.uk/chembl/api/data/molecule.json?molecule_structures__canonical_smiles__flexmatch=OCC
https://www.ebi.ac.uk/chembl/api/utils/docs

Fall 2015 Cheminformatics OLCC
Module 8: Interacting with Databases: Desktop and Web Based Applications Week 1

17

As a side note, you may use https://www.base64encode.org/ to encode and decode base64

strings.

An example use of this utils API is

https://www.ebi.ac.uk/chembl/api/data/image/CHEMBL25?format=svg where a SVG image

of the molecule with id CHEMBL25 is obtained (see Figure 11).

Figure 11. SVG image obtained from ChEMBL utils API.

https://www.base64encode.org/
https://www.ebi.ac.uk/chembl/api/data/image/CHEMBL25?format=svg

Fall 2015 Cheminformatics OLCC
Module 8: Interacting with Databases: Desktop and Web Based Applications Week 1

18

Week I activities

Activity 1

Choose a chemical and, using the web services presented in this module, obtain as much

information as you can about it. Present the collected information in a report indicating, for

each piece the complete URL (parameters included) for the query and the response

obtained.

Activity 2

Make a diagram or schema that summarizes which APIs allows you to convert from one

information of a chemical to another. At least, the schema should include the following

informations: name, IUPAC name, molecular weight, boiling point, SMILES, unique SMILES,

mol file, InChI, formula, 2D molecular drawing...

